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Abstract 13 

Accurate identification of the veraison process is essential for improving wine quality, which 14 

is challenging due to the variability of veraison among berries of the same cluster in algorihtm 15 

design, and also the subjective and labor-intensive issues in mannual identification. Therefore, this 16 

study proposed a method combining deep learning and image analysis to identify veraison in colored 17 

wine grapes under natural field growing conditions. The removal of irrelevant background was first 18 

achieved by semantic segmentation model, and then Mask R-CNN instance segmentation pipeline 19 

was constructed with anchor parameters optimization. In particular, three kinds of backbone 20 

networks were analyzed and compared in Mask R-CNN, and the overall performance of ResNet50-21 

FPN was the best, with the testset Average Precision reaching 81.53% and the inference time being 22 

only 45.70ms/frame. Then, a method for characterizing berry veraison by H component of HSV 23 

color space was proposed and the invariance of the H component of three colored wine grape berries 24 

under different light conditions was verified and discussed. An algorithm was developed to identify 25 

veraison progress by calculating the percentage of the number of berries of different grades in the 26 

total number of berries of the whole grape bunches. The test accuracy reached 92.50%, 91.25% and 27 

91.88% for three wine grapes including Cabernet Sauvignon, Matheran and Syrah respectively. The 28 

proposed method is able to provide vital reference for automated monitoring and intelligent 29 

management decisions of grape growth. 30 
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1. Introduction 32 

In the cultivation of wine grapes, veraison is the most critical period in the formation of wine 33 

grape, and the changes in the veraison stage play a crucial role in the quality of the grapes. Accurate 34 

identification of veraison process can provide intelligent decisions for vineyard cultivation 35 

management, which is important to improve the quality of veraison grapes and ensure the quality 36 

of wine (Costa et al., 2019; Santesteban, 2019). 37 

Traditionally, the veraison of a single berry is judged by skilled experts through empirical 38 

methods such as color, gloss and taste, but this method is subjective and labor-intensive. Due to the 39 

asynchronous nature of the veraison, even the veraison of individual berries in the same cluster 40 

varies greatly, which makes it inaccurate and inefficient for viticulturists to identify the veraison 41 

process of the entire cluster (Parker et al., 2011). With the expansion of vineyard acreage, automated 42 

technologies can effectively reduce labor, save time expenses, and enable high-throughput analysis. 43 

Therefore, an automated analysis of veraison processes is necessary and valuable for viticulturists.  44 



 

 

Kalt et al. (1995) investigated the relationship between surface color and other ripeness 45 

indicators (size, sugar, acid and anthocyanin content) in 72 blueberry samples. The results showed 46 

that sugar content was highly correlated with surface color, indicating that surface color can 47 

represent berry ripeness. Sadres and Petrie (2012) predicted the different maturity levels of grapes 48 

by measuring the soluble solids content within three wine grapes including Chardonnay, Shiraz and 49 

Cabernet Sauvignon. Grape veraison and ripening stage were found to be directly related. Extensive 50 

studies have shown that the process of veraison is accompanied by the accumulation of substances 51 

such as soluble solids and anthocyanins (Parker et al., 2013; Rienth et al., 2021). However, the 52 

accumulation of these compounds directly controls the degree of coloration of the grape berry skin, 53 

which in turn produces disturbances that affect the dynamics of color change in grapes (Llerena et 54 

al., 2019; Martins et al., 2012; Meng et al., 2015). This provides a theoretical basis for the 55 

identification of veraison processes by means of a pictorial approach. 56 

Various traditional methods have been used for fruit identification. Early research on image 57 

segmentation mainly includes color thresholding, region growing, and edge detection. Wang and 58 

Zhang (2014) used the angle model thresholds established by the a and b components of the Lab 59 

color space and the segmentation thresholds established by the H and S components of the HSV 60 

color space to achieve melon fruit image segmentation in complex backgrounds. Region growth-61 

based segmentation algorithm has been widely used to segment red tomato and apple images (Ji et 62 

al., 2012; Khoshroo et al., 2014). Rahman and Hellicar (2014) achieved the identification of white 63 

grape berries in field conditions based on the Hough transform method by setting an edge threshold 64 

of 0.9, an edge sensitivity of 0.05, a maximum radius of 35 and a minimum radius of 10, but there 65 

were a large number of false identifications. Although these methods can achieve high operating 66 

speeds, they suffer from crop variations, ambient light variations, shading and other problems which 67 

limit their practical applications (Xu et al., 2013). 68 

In recent years, the development of inexpensive sensors and electronic systems has driven the 69 

acquisition of field phenotypes, and emerging image analysis techniques have provided the 70 

necessary conditions for efficient and automated analysis and extraction of the necessary agronomic 71 

traits and phenotypic characteristics. With the advancement of deep learning methods, especially 72 

convolutional neural network (CNNs), the adaptability and robustness of image recognition 73 

methods have improved tremendously and many successes have been achieved (Wang and He, 74 

2022). Earlier studies also show that CNNs show great promise for image classification, object 75 

detection and segmentation. Lin et al. (2019) used fully convolutional network (FCN), a fully 76 

convolutional segmentation network, to segment pomegranate images in natural environments, and 77 

the results showed that the algorithm achieved an accuracy of 0.893 and an IoU of 0.806 for 78 

pomegranate segmentation. Liang et al. (2020) used YOLOv3 to detect litchi fruits in natural 79 

environments at night, and then determined the region of interest (RoI) of fruit stems based on the 80 

bounding boxes of litchi fruits. Finally, the fruit stems were segmented one by one based on U-Net 81 

to achieve the detection of litchi fruits and fruit stems at night. Kang and Chen (2019) used a deep 82 

convolutional neural network for real-time detection and semantic segmentation of apples in an 83 

apple orchard, and finally obtained a segmentation accuracy of 86.5%. Kestur et al. (2019) proposed 84 

a new MangoNet semantic segmentation network with better robustness in terms of scale, 85 

illumination, contrast and occlusion to accurately segment mangoes in an orchard environment. 86 

Despite some success and progress in the application of CNN and artificial vision systems in 87 

agriculture, a comprehensive analysis of the usability of these methods in real field conditions is 88 



 

 

still lacking. It can be seen that there are still much room to explore in using different CNN 89 

architectures for different agricultural application scenarios. Especially for the more complex tasks 90 

in agriculture, combining multiple CNN architectures helps to fully utilize the advantages of each. 91 

Some semantic segmentation models have also been used in cluster fruit recognition. Santos et 92 

al. (2020) evaluated the performance of three models, Mask R-CNN, YOLOv2 and YOLOv3, in 93 

order to detect and segment grape clusters in the field, and achieved the detection and counting of 94 

clusters. Similarly, Marani et al. (2021) used consumer-grade RGB-D cameras for automatic 95 

segmentation of grape bunches in color images. However, the segmentation of individual berries 96 

was not achieved. To identify individual berries, Grimm et al. (2019) proposed a deep semantic 97 

segmentation method by using VGG16 as an encoder to identify grape berries, and although the 98 

recognition accuracy was high, the method labeled berries with constant radius circles, which made 99 

it difficult to segment complete berry individuals. Zabawa et al. (2020) used DeepLabV3+ to 100 

segment grape berries in the field by adding "edge" labels and achieved surprisingly good 101 

segmentation results. Several studies have also been conducted by using deep learning for the 102 

detection and segmentation of individual berries (Buayai et al., 2020;Ni et al., 2020), but the method 103 

for identifying the veraison of clusters by the veraison of the berries is not yet clear. 104 

This study proposes a method that combines deep learning and image analysis to identify 105 

colored wine grape veraison in field environments. The method can be used as a reference for 106 

automated monitoring and intelligent management decisions of wine grapes during their growth. 107 

The main contributions are summarized as below: 108 

（1） A pipeline for extracting individual berries in field conditions was developed by 109 

combining semantic segmentation and instance segmentation. 110 

（2） A method for characterizing berry veraison by H component of HSV color space was 111 

proposed. 112 

（3） The invariance of the H component of three colored wine grape berries under different 113 

light conditions was verified and discussed. 114 

（4） An algorithm was developed to identify the veraison process of grapes, and the accuracy 115 

of the test on three varieties was able to reach more than 91.25%. 116 

2. Materials and methods 117 

2.1 Image preparation 118 

2.1.1 Image acquisition 119 

The experiment was conducted in a wine grape cultivation site in Yangling, Shaanxi Province 120 

(34°18′7″N, 108°05′10″E) with a continental monsoon climate. The wine grapes were cultivated in 121 

single hedge frame with north-south rows, with rain shelters and a spacing of about 3m between 122 

rows and 1.5m between vines. 123 

The wine grape image data collection took place in July-August 2021 and covered all stages 124 

of the veraison. The image acquisition equipment was a SONY ILCE-5100L digital camera 125 

manufactured by Sony. The camera resolution was 3008 × 1668 pixels, the aperture value was f/3.2, 126 

the exposure time was 1/60 s, and all images were saved in .JPG format. A total of three wine grape 127 

varieties were collected including Cabernet Sauvignon, Matheran and Syrah. To ensure the diversity 128 

of the samples, 20 images of clusters were collected at each time for each variety under different 129 

weather conditions, such as sunny and cloudy days, and different lighting conditions, such as normal, 130 

direct sunlight and backlight. A total of 45 acquisitions were performed during this period, with a 131 



 

 

total of 2700 images. Some sample wine grape images under various imaging conditions are shown 132 

in Fig 1. The number of images for each grape variety under different environmental conditions is 133 

shown in the Table 1.  134 

Table 1 Number of images of different wine grape varieties.  135 

Parameters 
Sunny 

Cloudy day 
Total 

/images Direct sunlight Backlight Normal 

Cabernet Sauvignon 147 108 225 420 900 

Matheran 138 96 246 420 900 

Syrah 145 110 225 420 900 

Total/images 430 314 696 1260 2700 

 136 

  

（a） （b） 

  

（c） （d） 

Fig. 1. Example images of wine grapes in natural field environments: (a) grapes under normal light on a sunny 

day, (b) grapes under cloudy day, (c) grapes under direct sunlight, and (d) grapes under backlight conditions. 

2.1.2 Semantic segmentation of grape cluster 137 

Owing to the interference of the complex background and the small size and variation of 138 

individual berries, direct separation of berries could not meet the accuracy requirement, so the 139 

background was removed by first segmenting the grape clusters and then further extracting the 140 

berries. To this end, the improved PSPNet semantic segmentation model (Chen et al., 2021) was 141 

used to remove irrelevant backgrounds as shown in Fig. 2, thus constructing the berry instance 142 

segmentation dataset. The grape image data of different wine grape varieties under different weather 143 

conditions were selected, and the background was removed for these 85 images as the original 144 

dataset for grape berry instance segmentation. 145 



 

 

 146 

Fig. 2. Semantic segmentation model with irrelevant background removal. 147 

2.1.3 Image annotation for instance segmentation 148 

The berry segmentation dataset in Section. 2.1.2 was then annotated using the LabelMe 149 

software interactive polygon tool (Russell et al., 2008). The tool defines the berry outline by using 150 

a sequence of points. The label values were named uniformly as "berry", others were treated as 151 

background, and the annotation was saved as a JSON file. The criteria adopted in the annotation 152 

process included the creation of as accurate a mask as possible for each cluster shown in the image. 153 

When more than 80% of the berries were obscured, they were not annotated. An example of berry 154 

annotation visualization is shown in Fig. 3. The number of berries on each grape image ranged from 155 

70 to 150, and a total of 5348 berry instances were annotated. 156 
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(a) (b) 

Fig. 3. Berry annotation: (a) removal of irrelevant background image, (b) annotated individual berries.  

2.2 Mask R-CNN based grape berry instance segmentation 158 

Mask R-CNN (He et al., 2017a) is based on the Faster R-CNN (Ren et al., 2015) object 159 

detection network, and a branch of FCN is added after the basic feature extraction network to 160 

construct an advanced network that integrates object detection and semantic segmentation. It is a 161 

two-stage processing framework, where the first stage is to extract the proposals (i.e., regions that 162 

may contain an object) of the image using the RPN (Region proposal network). The second stage is 163 

to complete the three tasks of category classification, bounding box regression and binary mask 164 

generation for the proposal regions extracted in the first stage. The berry detection and segmentation 165 

pipeline based on Mask R-CNN is shown in Fig. 4. 166 



 

 

 167 

Fig. 4. Mask R-CNN based berry detection and segmentation pipeline. 168 

2.2.1 Backbone network 169 

Mask R-CNN introduces the feature pyramid network (FPN) (Kim et al., 2018) in the backbone 170 

feature extraction network ResNet (He et al., 2016), which consists of three parts: bottom-up, top-171 

down and lateral connection, so as to fuse the low-level features with high resolution and the high-172 

level features with rich semantic information. This enables effective integration of low-level 173 

features and high-level features at multiple scales, thus making full use of the features extracted by 174 

the backbone feature network at each stage. The ResNet-FPN structure is shown in Fig. 5. The 175 

ResNet-FPN compresses the original image size to 1/4, 1/8, 1/16, 1/32 times of the original by the 176 

feature extraction network ResNet to obtain feature maps C2, C3, C4, C5 of image feature 177 

information at different scales. Then five effective feature layers P2, P3, P4, P5 and P6 are obtained 178 

by the feature pyramid structure. Finally, these five feature maps at different scales are used as the 179 

input of RPN to find the RoI. 180 

 181 

Fig. 5. ResNet-FPN Structure for feature map generation. 182 



 

 

2.2.2 RPN optimization  183 

After the feature map is generated by the backbone feature extraction network, it is passed to 184 

the RPN module to generate the proposed regions. First, multiple anchor boxes are generated, and 185 

for each anchor box, a classification task and a regression task are performed on it. In the RPN, 186 

there are five object detection scales, respectively, 32, 64, 128, 256 and 512, which are anchored 187 

mainly to fit 80 different classes of object targets in the COCO2017 dataset (Lin et al., 2014). In 188 

this study, the above five detection scales are not fully suitable for the detection of grape berries. 189 

Therefore, in order to make the bounding box of grape berries more accurate, the anchor size of the 190 

original RPN is optimized. The anchor of the RPN is optimized by combining the size of the input 191 

image and the size of the berries, and five detection scales are designed, respectively, 8, 16, 32, 64 192 

and 128, combined with three forms of aspect ratios of labeled rectangular frames, respectively, 0.5, 193 

1 and 2. The final combination of 15 benchmark windows for predicting the region containing the 194 

target in the image makes the output more accurate for the region of interest.  195 

2.2.3 Loss function 196 

Mask R-CNN is a multi-task network with a loss function jointly composed of classification, 197 

bounding box regression and mask prediction branches. The overall loss calculation formula is as 198 

in Eq. 1. 199 

cls box maskL L L L= + +                                                           (1) 200 

where 
clsL  is the classification loss, 

boxL  is the regression loss of the bounding box, and 
maskL  201 

is the mask loss. In particular, for the loss in the mask, the Mask branch has an output of k m m   202 

dimensions for each RoI (i.e., k m m  binary mask images), with k representing the total number 203 

of classes. For the predicted binary mask output, a sigmoid function is applied to each pixel point, 204 

and the obtained result is used as input to the cross-entropy loss function, and the overall loss is 205 

defined as the average binary cross-loss entropy. The calculation of maskL  is detailed in Eq. 2. 206 

2
1 ,

1
ˆ ˆlog (1 )log(1 log )k k

mask ij ij ij ij

i j m

L y y y y
m  

 = − + − −                                       (2) 207 

where ijy  is the coordinate point ( , )i j  in the true mask for the region of size m m ， ˆ k

ijy  is the 208 

predicted value of the same coordinate in the mask learned for the ground truth class k . 209 

2.3 Model training 210 

The software and hardware configurations used for model training and testing in the experiments 211 

are shown in Table 2.  212 

Table 2 Experimental software and hardware configuration details 213 

The dataset (images and annotated results) were divided into a training set and a test set with a 214 

ratio of 8:2. To accelerate the model convergence and improve the segmentation accuracy of the 215 

network, transfer learning was used to load pre-trained weights on the COCO dataset (Lin et al., 216 

2014) to initialize the model parameters. The hyperparameters for model training were empirically 217 

set to 80 for epoch, 2 for bach size, 0.01 for the initial learning rate, and a decay rate of 0.1 times 218 

the initial value for every 1500 iterations. To prevent model overfitting, the weight decay was set to 219 

Accessories Parameters 

Operating System Linux（Ubuntu20.04） 

CPU  Intel(R) CoreTM i9-11900K @ 3.50GHz×16 

GPU NVIDIA RTX 3090, 24GB 

Development environments Python 3.7, Detectron2(pytorch 1.7.1), CUDA 11.1 



 

 

10-4 and stochastic gradient descent (SGD) (Bottou, 2012) was used to update the parameters and 220 

optimize the training process. 221 

Data enhancement techniques were used randomly during the training process, meaning that 222 

mirroring operations (horizontal and vertical), rotation, cropping, and color changes (brightness, 223 

contrast, and saturation with intensity between 0.9 and 1.1) were randomly applied online to the 224 

input images as each new batch of images was fed into the network for training, and the 225 

corresponding annotation files were transformed simultaneously. Meanwhile, a random scaling 226 

process was set for each batch of images with a minimum edge length from 448 to 512 pixels, in 227 

steps of 32, and a maximum edge size of no more than 512 pixels.  228 

2.4 Identification of grape veraison process based on H component 229 

Extraction of berries is achieved by establishing a berry segmentation pipeline (Fig. 6.), 230 

ensuring that image analysis can be performed on individual berries. The input raw image is first 231 

semantically segmented to remove the background, and then input into Mask R-CNN for instance 232 

segmentation of the berries to generate a mask. Each berry is separated and a connected component 233 

is generated by the mask. Finally, each berry is extracted and the number of each grade is counted 234 

by the connected component algorithm (He et al., 2017b). 235 

 236 

Fig. 6. Individual berry extraction pipeline. 237 

2.4.1 Berry veraison grade and classification criterion 238 

Some of the berries may have reached the mid to late stage of veraison, while others may have 239 

just started because of the slow color change. Considering the asynchronous veraison between 240 

different berries of the same berry cluster, it is necessary to accurately identify the veraison status 241 

of individual berries in order to accurately identify the veraison of the whole berry cluster. Therefore, 242 

it is necessary to classify the veraison grade of the wine grape berries. 243 

The original image is an additive color mixing model consisting of R, G, and B light 244 

superimposed on each other, which is not suitable for grape berry grade of veraison determination 245 

because it is susceptible to light changes. The HSV color space has uniform color variation, where 246 

hue (H) only shows color information in the image, not intensity information in the image, with 247 

excellent light invariance (Hou et al., 2018; Seetharaman and Kamarasan, 2014; Zhang et al., 2017), 248 

which can better reflect the color information in the image. In this study, RGB is mapped to HSV 249 

based on the mathematical relationship between RGB and HSV space (Zhang et al., 2017), and the 250 

H component of HSV space is used to characterize the dynamics of the veraison of grape berries 251 

and thus determine the grade of berries. For the subsequent study, the value range of H is normalized 252 



 

 

from 0°-360° to between 0 and 1.  253 

In this study, the veraison of berries was classified into four grades, G1, G2, G3, and G4, using 254 

the veraison of berries judged by wine viticulture experts as the standard. The G1 grade berries were 255 

basically green and had not changed color or the color change was slight; the G2 grade berries were 256 

in the transition stage from green to red; the G3 grade berries changed color completely but were 257 

still light in color; and the G4 grade berries changed color completely and were very dark, 258 

completely changing to dark blue. Using Cabernet Sauvignon as an example, 50 berries were 259 

selected for each grade. Since the berries are not a single pixel, the mean of the H value of the pixel 260 

area where the selected berries are located was calculated. The mean H values of these 200 berries 261 

were statistically analyzed and the results are shown in Fig. 7 (Supplementary Table S1). The range 262 

of H values taken for different grade of berries was derived from Fig. 8, and the berry grade of 263 

veraison were divided as shown in Table 3. 264 

 265 

Fig. 7. Distribution of mean H component values of berries of different grades. (The black dashed line in the figure 266 

indicates the mean value and the black solid line indicates the error bar) 267 

Table 3 Berry grade of veraison classification. 268 

Grade H average value range Examples of berries 

G1 0.167H 0.333 
 

G2 0H 0.167 
 

G3 0.333H 0.5 
 

G4 0.5H 0.667 
 

2.4.2 Classification of grape clusters veraison 269 

In a study of red grape ripeness by Pothen and Nuske, they used the flame seedless red grape 270 

variety to classify grape ripeness into four classes based on the percentage of color changing berries 271 

in the grape bunches, mainly by determining the percentage of color changing berries in the whole 272 

grape bunches (Pothen and Nuske, 2016). Similarly, the veraison is divided into four stages, denoted 273 

by Stage1, Stage2, Stage3 and Stage4 respectively. Images of typical grape clusters at each stage of 274 

veraison are shown in Fig. 8. 275 



 

 

    

（a） （b） （c） （d） 

Fig. 8. Images of typical grape clusters at different stages of veraison: (a) Stage1, (b) Stage2, (c) Stage3, and (d) 

Stage4. 

In the first stage of veraison, most of the berries on the grape bunches were G1 grade berries, 276 

and the total number of G2, G3, and G4 grade berries accounted for less than 20% of the total 277 

number of berries on the whole grape bunches. In the second stage of veraison, the grape bunches 278 

were still mainly G1 grade berries, and the total number of G2, G3, and G4 grade berries accounted 279 

for 20% to 50% of the total number of berries on the whole grape bunches. In the third stage of 280 

veraison, G2, G3, and G4 berries were the main ones on the bunches, with G2, G3, and G4 berries 281 

accounting for 50% to 80% of the total number of berries on the whole bunch. At the fourth stage 282 

of veraison, that is, at the end of veraison, most of the berries on the grape bunches were G3 and G4 283 

grade berries, and the total number of G3 and G4 grade berries accounted for more than 80% of the 284 

total number of berries on the grape bunches. Alternatively, the total number of berries of G2, G3 285 

and G4 grades is more than 80% of the total number of berries of the whole cluster and the total 286 

number of berries of G3 and G4 grades is more than 80% of the total number of berries of G2, G3 287 

and G4 grades. The method for determining the veraison of grape clusters is shown in Algorithm 1. 288 
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Algorithm. 1 291 

Algorithm. 1 Grapes cluster veraison determination 

Input: in  , where in   is the total number of berries with grade i  

( 1,2,3,4)i =  

Output: V , 1 2 3 4{ , , , }V s s s s  

1:
1k =scale1, 

2k =scale2, 
3k =scale3. Refer Eq.5. 

2: if 
1k <0.2: 

3:     V =
1s  

4: elif 0.2<=
1k <0.5: 

5:     V =
2s  

6: elif (0.5<=
1k <0.8) or (

1k >=0.8 and
3k <0.8): 

7:     V =
3s  

8: elif (
2k >=0.8) or (

1k >=0.8 and
3k >=0.8): 

9:     V =
4s  

2.5 Evaluation Metrics 292 

For berry instance segmentation, similar to the COCO competition metrics (Lin et al., 2014), 293 

average precision (AP) and average recall (AR) were used. The necessary metrics including 294 

precision (P) and recall (R) in the calculation of AP and AR are described by Eq. 8, and Eq. 9, 295 

respectively. It should be noted that precision and recall are dependent upon the IoU threshold. The296 

IoU is calculated by the predicted segmentation mask (
mP ) and ground truth (G) using Eq. 10. 297 

TP
P

TP FP
=

+
                                                                             (6) 298 

TP
R

TP FN
=

+
                                                                             (7) 299 

( ) ( )

( ) ( )

m

m

mask P mask G
IoU

mask P mask G


=


                                                                (8) 300 

where TP , FP , and FN  means true positive, false positive, and false negative, respectively. 301 

The pixel size of the berry dataset is also considered. There are two available sizes (small and 302 

medium) according to the area conditions of each instance. The Table 4 details the definitions of the 303 

COCO metrics. In this case, the maximum number of detections per image in AR is set to 200, 304 

which is different from the original COCO metric, due to the wide distribution of the number of 305 

berries annotated in each image in the dataset, ensuring that every berry is detected. 306 

  307 



 

 

Table 4 COCO Metrics Definition. 308 

Metric Definition 

AP  
Average of the ten AP calculated from IoU = 0.5 to IoU = 0.95 increasing in 

steps of 0.05 

0.5IoUAP =
 AP at IoU =0.5 

0.75IoUAP =
 

AP at IoU =0.75 

max 200AR =
 

Recall considering the detection of up to 200 objects 

APs  AP for small objects: area < 322 

APm  for medium objects: 322 < area < 962 

3. Results 309 

3.1 Comparison of different Mask R-CNN backbone networks 310 

Grape berries were extracted by constructing three different feature extraction structures of 311 

ResNet50-FPN, ResNet101-FPN, and ResNext101-FPN as the backbone feature extraction network 312 

of Mask R-CNN instance segmentation model. The performance of each backbone was tested on 313 

the grape berry instance segmentation test dataset, and the results given in Table 5 compare the three 314 

backbones. The results show that there is no significant difference in term of AP obtained by Mask 315 

R-CNN using deeper backbones for feature extraction. The AP of the ResNet50-FPN, ResNet101-316 

FPN, and ResNext101-FPN backbones obtained 81.53%, 80.88%, and 81.94%, respectively. The 317 

segmentation effect for small targets is obviously not as high as the average precision of medium 318 

target segmentation, with the highest APm  reaching 90.17%, which is related to the observed size 319 

presented by each berry in the image and some very small area targets were not annotated and 320 

detected by the model due to the error of dataset annotation. It should be noted that the deeper 321 

ResNet101-FPN backbone does not result in improved model performance, but rather increases the 322 

difficulty of training and convergence time as the parameters of the model and the complexity of 323 

the network increase. Although the Mask R-CNN with ResNext101-FPN has a slightly better 324 

average precision in instance segmentation, it has a longer inference time of 62.42ms/frame 325 

compared to the Mask R-CNN with ResNet50-FPN, which has an inference time of 45.70ms/frame. 326 

Table 5 Comparison of Mask R-CNN test results with different backbones. 327 

Backbone ResNet50-FPN ResNet101-FPN ResNext101-FPN 

AP  81.53 80.88 81.94 

0.5IoUAP =
 97.63 96.70 97.62 

0.75IoUAP =
 95.57 95.56 95.54 

max 200AR =
 84.10 83.70 84.50 

APs  77.91 77.36 78.11 

APm  90.17 90.08 90.17 

Inference time(ms/frame) 45.70 48.97 62.42 

3.2 Influence of different light conditions on berry segmentation 328 

In order to verify the model segmentation performance under different weather lighting 329 

conditions, grapes under four different lighting conditions were selected in the test set. As can be 330 

seen from the Fig. 9, the Mask R-CNN model has strong robustness under different weather lighting 331 

environments, which is partly attributed to the dataset augmentation operation during training, 332 



 

 

producing a rich variation set that potentially reflects the real field conditions. However, in the red 333 

boxed area, due to the gap in the camera field of view, some of the clusters vary more between each 334 

other because of occlusion and overlap making the light more variable, leading to blurring in some 335 

areas, which makes the accuracy of the predicted masks in these areas decrease and some missed 336 

detections occur. However, the overall segmentation effect is surprisingly good. 337 

 338 

Fig. 9. Grape berries extraction results of Mask R-CNN model under different lighting conditions. (a) original input 339 

image. (b) grape berries segmentation result. (c) grape berries extraction result. 340 

3.3 Comparison of different instance segmentation models 341 

In addition, to further validate the effectiveness of the Mask R-CNN instance segmentation 342 

model, the same grape berry instance segmentation training dataset was used to train the advanced 343 

instance segmentation network SOLOv2 under the same training environment, and the model 344 

performance was tested using the test dataset. The comparative performance of the Mask R-CNN 345 

and SOLOv2 based berry extraction model for wine grapes is shown in Table 6. 346 

The performance metrics of Mask R-CNN model are significantly better than the SOLOv2 347 

model. The AP , IoU=0.5AP , 
0.75IoUAP =

,and 
max 200AR =

 of Mask R-CNN model obtain 81.53%, 97.63%, 348 

95.57%, and 84.10% higher than SOLOv2 model by 9.43%, 5.86%, 7.12%, and 10%, respectively. 349 

In addition, the Mask R-CNN model is also 15ms faster than the SOLOv2 model in terms of model 350 

computational efficiency. 351 

  352 



 

 

Table 6 Comparison of Mask R-CNN and SOLOv2 on test dataset. (note: the one with better 353 

performance is highlighted in bold.) 354 

Model Mask R-CNN SOLOv2 

AP  81.53 72.10 

IoU=0.5AP  97.63 91.77 

0.75IoUAP =
 95.57 88.45 

max 200AR =
 84.10 74.10 

APs  77.91 65.81 

APm  90.17 86.55 

Inference time(ms/frame) 45.70 60.70 

Fig. 10 shows the comparison of the berry extraction by Mask R-CNN and SOLOv2. 355 

Compared with the Mask R-CNN model, the SOLOv2 model has more duplicate segmentation. As 356 

shown in the partially enlarged view of the red box content in Fig. 10(d), the SOLOv2 model 357 

misidentifies the same grape berry as multiple different individuals, which may be related to the 358 

structure and inference mechanism of the SOLOv2 network. SOLOv2 transforms the segmentation 359 

problem into a positional classification problem and directly deals with instance segmentation 360 

without relying on box detection, which does not facilitate the segmentation of mutually overlapping 361 

targets. Furthermore, the SOLOv2 model suffers from more missed segmentation problems, as 362 

shown in the partial enlarged view of the yellow box content in Fig.10 (d), where some of the grape 363 

berries are not segmented. 364 

 365 

Fig. 10. Comparisons of Mask R-CN and SOLOv2 for some grape berry segmentation examples: (a) original image, 366 

(b) results of background removal by semantic segmentation, (c) segmentation results of Mask R-CN grape berries, 367 

(d) indicates local zoomed image, (e) segmentation results of SOLOv2 grape berries. 368 

3.4 Results of identification of the colored wine grape veraison process  369 

The images of three colored wine grape varieties including Cabernet Sauvignon, Matheran and 370 

Syrah, were randomly selected at different stages of veraison under the guidance of wine viticulture 371 

experts. 40 images were selected at each stage for each variety. The proposed algorithm was used 372 

to identify the 160 images of each wine grape variety, and the results are shown in Fig. 11. 373 



 

 

  

(a) (b) 

 

(c) 

Fig. 11. Confusion matrix for identifying the veraison of three wine grapes. (a) Cabernet Sauvignon. (b) Matheran. 

(c) Syrah. 

The overall accuracy of the identification results for Cabernet Sauvignon, Matheran, and Syrah 374 

wine grapes at each stage of veraison was 92.50%, 91.25%, and 91.88%, respectively. The proposed 375 

algorithm has a high accuracy in determining the veraison process for all three colored wine grape 376 

varieties. It is also evident from the three confusion matrices that the highest precision was found in 377 

the Stage1 and Stage4 for all three wine grapes. It seems possible that these results are due to the 378 

berry color of each wine grape variety, which was more obvious in these two stages. The accuracy 379 

of the proposed algorithm was slightly lower in the Stage2 and Stage3 of the veraison process, 380 

especially in the Stage3, where it resulted in the least precision. These results are likely to be related 381 

to the grape berry color, which is closer in these two stages, and it is relatively difficult for the 382 

human eye to distinguish the grape berry classes, leading to errors. However, the precision and recall 383 

of all three varieties at all four stages was all above 85%, which is encouraging for practical 384 

applications. Detailed precision and recall results for all three varieties under four stages are shown 385 

in Table 7. 386 

  387 



 

 

Table 7 Precision and recall of the veraison identification for three different grape varieties. 388 

 Cabernet Sauvignon Matheran Syrah 

 P (%) R (%) P (%) R (%) P (%) R (%) 

Stage1 95.00 95.00 92.86 97.50 97.44 95.00 

Stage2 90.00 90.00 87.80 90.00 87.80 90.00 

Stage3 92.11 87.50 89.47 85.00 87.50 87.50 

Stage4 92.86 97.50 94.87 92.50 95.00 95.00 

4. Discussion 389 

4.1 Segmentation error analysis 390 

There are four main types of berry segmentation errors: missed detection, repeated detection, 391 

two berries detected as one and one berry detected as two, as shown in Fig. 12. For missed detection, 392 

some berries are obscured by other berries, and these berries are difficult to detect even by the human 393 

eye. For repeated detection, the segmentation is repeated on top of the correct segmentation of two 394 

berries, which may be related to the fact that the model learns some features with adversarial nature 395 

during feature learning. Because the dataset was annotated manually, it is difficult to avoid 396 

individual berry annotation errors, and then the small pixel size of the berries and the resolution of 397 

the image make the contour information between the berries unclear. Due to this error, the mask 398 

accuracy decreases. When two berries are not clearly separated and one berry is partially covered 399 

by the other berry, they are more likely to be detected as one berry. For a berry detected as two, the 400 

example shows that a small portion of the berry is incorrectly detected as a single berry, while 401 

another portion of that berry is detected as a separate berry. The most likely reason for these 402 

inaccurate detections is that there are many berries covering each other, resulting in only a small 403 

portion of some berries being visible. In fruit segmentation studies, Perez-Borrero et al. (Perez-404 

Borrero et al., 2020) used deep learning techniques to segment strawberry instances with an AP of 405 

only 45.35%, and Ni et al. (2020) segmented blueberries by developing a image segmentation 406 

technique to extract fruit traits with an average precision of 71.6% in the test set under an IoU=0.5 407 

threshold. The AP of our proposed method for segmenting berries was able to reach 81.53%. 408 

Although there were some detection errors due to the inherent limitations of 2D images, the overall 409 

results were promising. 410 

 411 

Fig. 12. Four examples of berry segmentation errors. 412 

4.2 H component light invariance 413 

To further validate the light invariance of the H component in the HSV color space of wine 414 

grapes. Statistical analyses of H values were performed for each colored wine grape variety at 415 



 

 

different stages of veraison under different environmental conditions (normal, cloudy, direct 416 

sunlight, and backlight). Berries of each variety were randomly selected from 480 images under 417 

four environmental conditions at each color change stage, 60 berries were selected for each 418 

environment. The total of 2880 individual berry images were selected for analysis (Supplementary 419 

Table S2, Table S3 and Table S4). Some selected images of the berries in the different environments 420 

are shown in Fig. 13 (Cabernet Sauvignon for example). 421 

 422 

Fig. 13. Images of grapevine berries at four grades of veraison under different light conditions. 423 

Fig. 14 shows that the mean H component values of the G1 grade berries ranging from 0.2 to 424 

0.3 under different weather conditions, 0.05 to 0.15 for the G2 grade, 0.4 to 0.45 for the G3 grade, 425 

and 0.5 to 0.65 for the G4 grade. Surprisingly, this is consistent with the method mentioned in 426 

section 2.3.1 for the range of grades. An implication of this is the possibility that the H component 427 

in HSV was able to determine the veraison of berries of different colored wine grape varieties under 428 

both sunny and cloudy weather conditions, and under both direct sunlight and backlight conditions. 429 

It was demonstrated that the mean values of the H component of the berries of different veraison of 430 

wine grape varieties had good light invariance under various weather conditions, which further 431 

demonstrated the feasibility of the proposed method to characterize the berry veraison of colored 432 

wine grapes using the H component of HSV. 433 

The variation of H component in berries of the three colored wine grape varieties with different 434 

grades showed a consistent pattern under different light conditions (Fig. 15). The lowest H 435 

component values were taken in G2, which was related to the spatial color distribution of HSV. The 436 

H component values of the Matheran variety fluctuated less in a certain range of the four grades G1-437 

G4 under different weather conditions. The berries of the G4 of the three varieties showed more 438 

stable H component values under different weather conditions compared to the other three grades, 439 

while at the same time, there were more outliers, with Syrah showing the most significant (Fig. 14). 440 

This probably relates to the mask accuracy of the segmentation, where the model failed to account 441 

for some of the berry edge pixels. Moreover, since the berries are relatively compact, there 442 



 

 

potentially exists multiple berry parts within the same pixel point.  443 

  444 



 

 

 445 
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(c) (d) 

Fig. 14. H values of three wine grapes under different light conditions for four grades of berries. (a), (b), (c) and 

(d) represent G1, G2, G3 and G4 grape berries, respectively (In each boxplot, the top edge, black line inside, and 

the bottom edge of the box represent the upper (Q3), median (Q2), and lower (Q1) quartiles, respectively. The 

whiskers represent the maximum (Q3 + 1.5*IQR) and minimum (Q1–1.5*IQR) valid values defined by 

interquartile ranges (IQR = Q3-Q1), respectively. The red dots outside the box plot represent outliers.) 

 446 

 447 

  

(a) (b) 



 

 

 

(c) 

Fig. 15. Variation in H values under different light conditions for different grades of berries. (a), (b) and (c) for 448 

Cabernet Sauvignon, Matheran and Syrah berries, respectively. 449 

4.3 Difference between the proposed algorithm and manual identification 450 

Fig. 16 shows images of the same grape bunches and of the same wine grape variety taken on 451 

August 10, 2021 and August 11, 2021, and their veraison by wine viticulture experts are that both 452 

images are at Stage3. Using the proposed algorithm, the results were that the grape bunches on 453 

August 10, 2021 had Scale1, Scale2 and Scale3 of 73.49%, 69.88% and 95.08%, respectively, at 454 

Stage3. The results of the wine grape cultivation expert's determination were the same as those of 455 

the Stage4 image, which were 82.89%, 80.26%, and 96.83% for the August 11, 2021 grape clusters. 456 

It is interesting to note that the results of the manual determination and the proposed algorithm are 457 

not consistent. This discrepancy is attributed to the fact that the colors of the two images are close, 458 

but there are actual potential differences. As shown in the red box in the partial magnification, it is 459 

hard for the human eye to perceive the variance. This finding was unexpected and suggests that the 460 

proposed method is in some way more objective than the manual determination. It is a promising 461 

method that uses the H component feature to describe the veraison of the whole cluster in terms of 462 

dimension of individual berries, which fundamentally explains the dynamics of the whole veraison. 463 

It provides sufficient data support for an accurate determination of the veraison. 464 

 465 

Fig. 16. Images of the same cluster on different dates. (a) indicates images taken on August 10, 2021, (b) indicates 466 

partial zoom and (c) indicates images taken on August 11, 2021. 467 

5. Conclusions and future work 468 

The veraison process varies among different clusters and among different berries of the same 469 

cluster. The traditional manually identifying method is too subjective, inaccurate and inefficient. In 470 

this study, berry segmentation dataset was first constructed using semantic segmentation model to 471 

remove irrelevant background. Three different feature extraction structures, ResNet50-FPN, 472 

ResNet101-FPN and ResNext101-FPN, were constructed as the backbone feature extraction 473 



 

 

network of Mask R-CNN instance segmentation model to extract berries from wine grape clusters 474 

by optimizing the relevant parameters of the model RPN network. The results show that the Mask 475 

R-CNN with ResNet50-FPN structure as the backbone feature extraction network performs 476 

relatively well, obtaining AP,
IoU=0.5AP ,

0.75IoUAP =
and 

max 200AR =
 on the test set with 81.53%, 97.63%, 477 

95.57% and 84.10%, respectively, which is higher than the advanced SOLOv2 by 9.43%, 478 

5.86% ,7.12% and 10%, respectively. In addition, the model has good robustness under different 479 

weather and lighting conditions. 480 

The H component was proposed to characterize berry veraison grade, and the invariance of the 481 

H component of different colored wine grape berries under different light conditions was verified 482 

and discussed. The algorithm was developed by calculating the proportion of the total number of 483 

berries of different veraison levels in the total number of berries of the whole grape bunches and 484 

compared with the results of cultivation experts. This is a promising method to more objectively 485 

describe the veraison of the whole bunches in terms of the veraison grade dimension of individual 486 

berries, and to provide certain research references to promote the wine grape industry in the direction 487 

of refinement, intelligence and automation. 488 

There is also further room for improvement. Firstly, a two-step approach was adopted for 489 

individual berry segmentation including semantic segmentation for background removal (e.g. grape 490 

clusters segmentation) and instance segmentation for berry segmentation. It is worthy developing a 491 

direct berry instance segmentation model with good performance in field conditions. Moreover, 492 

although the use of 2D images for berry extraction and the calculation of the percentage of berries 493 

with different veraison levels is sufficient to characterize the veraison process of the whole cluster, 494 

the inherent limitations of 2D images exist such as making some berries invisible and resulting in 495 

segmentation errors. Therefore, it is necessary to extract features from 3D images in the future. 496 

Meanwhile, the annotation of the berry dataset was labor-intensive and therefore only three varieties 497 

were explored. Therefore, future work also focuses on how to make the developed method 498 

generalizable to other wine grape varieties. 499 
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