151 research outputs found

    Resonant tunneling through a macroscopic charge state in a superconducting SET transistor

    Full text link
    We predict theoretically and observe in experiment that the differential conductance of a superconducting SET transistor exhibits a peak which is a complete analogue in a macroscopic system of a standard resonant tunneling peak associated with tunneling through a single quantum state. In particular, in a symmetric transistor, the peak height is universal and equal to e2/2πe^2/2\pi \hbar. Away from the resonance we clearly observe the co-tunneling current which in contrast to the normal-metal transistor varies linearly with the bias voltage.Comment: 11 pages, 3 figures, Fig. 1 available upon request from the first autho

    Towards the observation of phase locked Bloch oscillations in arrays of small Josephson junctions

    Full text link
    We have designed an experiment and performed extensive simulations and preliminary measurements to identify a set of realistic circuit parameters that should allow the observation of constant-current steps at I=2ef in short arrays of small Josephson junctions under external AC drive of frequency f. Observation of these steps demonstrating phase lock of the Bloch oscillations with the external drive requires a high-impedance environment for the array, which is provided by on-chip resistors close to the junctions. We show that the width and shape of the steps crucially depend on the shape of the drive and the electron temperature in the resistors

    Resistively-shunted superconducting quantum point contacts

    Full text link
    We have studied the Josephson dynamics of resistively-shunted ballistic superconducting quantum point contacts at finite temperatures and arbitrary number of conducting modes. Compared to the classical Josephson dynamics of tunnel junctions, dynamics of quantum point contacts exhibits several new features associated with temporal fluctuations of the Josephson potential caused by fluctuations in the occupation of the current-carrying Andreev levels.Comment: 5 pages, RevTex, 3 postscript figures include

    Single-electron current sources: towards a refined definition of ampere

    Get PDF
    Controlling electrons at the level of elementary charge ee has been demonstrated experimentally already in the 1980's. Ever since, producing an electrical current efef, or its integer multiple, at a drive frequency ff has been in a focus of research for metrological purposes. In this review we first discuss the generic physical phenomena and technical constraints that influence charge transport. We then present the broad variety of proposed realizations. Some of them have already proven experimentally to nearly fulfill the demanding needs, in terms of transfer errors and transfer rate, of quantum metrology of electrical quantities, whereas some others are currently "just" wild ideas, still often potentially competitive if technical constraints can be lifted. We also discuss the important issues of read-out of single-electron events and potential error correction schemes based on them. Finally, we give an account of the status of single-electron current sources in the bigger framework of electric quantum standards and of the future international SI system of units, and briefly discuss the applications and uses of single-electron devices outside the metrological context.Comment: 55 pages, 38 figures; (v2) fixed typos and misformatted references, reworded the section on AC pump

    Non-equilibrium current noise in mesoscopic disordered SNS junctions

    Full text link
    Current noise in superconductor-normal metal-superconductor (SNS) junctions is calculated within the scattering theory of multiple Andreev reflections (MAR). It is shown that the noise exhibits subharmonic gap singularities at eV=2Δ/neV=2\Delta/n, n=1,2,...n=1,2,... both in single-mode junctions with arbitrary transparency DD and in multi-mode disordered junctions. The subharmonic structure is superimposed with monotonic increase of the effective transferred charge q=SI(0)/2Iq^*=S_I(0)/2I with decreasing bias voltage. Other features of the noise include a step-like increase of qq^* in junctions with small DD, and a divergence SI(0)V1/2S_I(0) \propto V^{-1/2} at small voltages and excess noise Sex=2eIexS_{ex} = 2eI_{ex}, where IexI_{ex} is the excess current, at large voltages, in junctions with diffusive transport.Comment: 5 page

    Методологический анализ при построении количественного социологического исследования: проблемы и решения

    Get PDF
    This article investigates the logic, main procedures and the content of the theoretical and methodological construction of the sociological research project. Key issues at every stage of project design and during the process of transition from one stage to another are considered. The author proposes several ways of improving the accuracy and scientific significance of the results of sociological research by constructing models of different levels, consequential from one to another.Статья посвящена проблемам разработки логики, процедур и содержания теоретического и методического построения социологического исследования как одному из приоритетных направлений развития его методологии. Раскрыты проблемы, с которыми сталкивается исследователь на каждом этапе разработки программы и при переходе от одного этапа к другому. Предложены пути решения данных проблем посредством построения моделей различного уровня, логически вытекающих друг из друга, что позволяет повысить достоверность и научную значимость результатов социологического исследования

    Macroscopic resonant tunneling of magnetic flux

    Full text link
    We have developed a quantitative theory of resonant tunneling of magnetic flux between discrete macroscopically distinct quantum states in SQUID systems. The theory is based on the standard density-matrix approach. Its new elements include the discussion of the two different relaxation mechanisms that exist for the double-well potential, and description of the ``photon-assisted'' tunneling driven by external rf radiation. It is shown that in the case of coherent flux dynamics, rf radiation should lead to splitting of the peaks of resonant flux tunneling, indicating that the resonant tunneling is a convenient tool for studying macroscopic quantum coherence of flux.Comment: 11 pages, 8 figure

    Coherent control of macroscopic quantum states in a single-Cooper-pair box

    Full text link
    A small superconducting electrode (a single-Cooper-pair box) connected to a reservoir via a Josephson junction constitutes an artificial two-level system, in which two charge states that differ by 2e are coupled by tunneling of Cooper pairs. Despite its macroscopic nature involving a large number of electrons, the two-level system shows coherent superposition of the two charge states, and has been suggested as a candidate for a qubit, i.e. a basic component of a quantum computer. Here we report on time-domain observation of the coherent quantum-state evolution in the two-level system by applying a short voltage pulse that modifies the energies of the two levels nonadiabatically to control the coherent evolution. The resulting state was probed by a tunneling current through an additional probe junction. Our results demonstrate coherent operation and measurement of a quantum state of a single two-level system, i.e. a qubit, in a solid-state electronic device.Comment: 4 pages, 4 figures; to be published in Natur

    Active suppression of dephasing in Josephson-junction qubits

    Full text link
    Simple majority code correcting kk dephasing errors by encoding a qubit of information into 2k+12k+1 physical qubits is studied quantitatively. We derive an equation for quasicontinuous evolution of the density matrix of encoded quantum information under the error correction procedure in the presence of dephasing noise that in general can be correlated at different qubits. Specific design of the Josephson-junction circuit implementing this scheme is suggested.Comment: 4 pages, 1 figur

    Direct Observation of Josephson Capacitance

    Get PDF
    The effective capacitance has been measured in the split Cooper pair box (CPB) over its phase-gate bias plane. Our low-frequency reactive measurement scheme allows to probe purely the capacitive susceptibility due to the CPB band structure. The data are quantitatively explained using parameters determined independently by spectroscopic means. In addition, we show in practice that the method offers an efficient way to do non-demolition readout of the CPB quantum state.Comment: 4 page
    corecore