82 research outputs found

    Light-emitting diode with top electrode as a laminar diffraction grating

    Get PDF

    Temperature Reconstruction in Depth of Biological Object by Acoustical Radiometer

    Get PDF
    Abstract-Acoustothermometrical measurements were carried out for the model biological objects. As model objects we used the plasticine bodies placed in the water. In the experiment the model objects were being heated up and cooled down. The temporal dependences of their acoustobrightness temperatures were obtained and the reconstruction of the 2-D temperature distribution was made. The position, size and temperature of the thermal source were detected. The reconstruction error was about 1-2 mm for the position and size and about 1 K for the temperature. These results were obtained when the measurement time was about 50 s. As well we carried out the acoustothermometrical control during the laser hyperthemia of the mammary gland. The medicine procedure was continued 10 min and the maximum gland acoustobrightness temperature was increased at about 7 degrees

    Brightness of a phase-conjugating mirror behind a random medium

    Get PDF
    A random-matrix theory is presented for the reflection of light by a disordered medium backed by a phase-conjugating mirror. Two regimes are distinguished, depending on the relative magnitude of the inverse dwell time of a photon in the disordered medium and the frequency shift acquired at the mirror. The qualitatively different dependence of the reflectance on the degree of disorder in the two regimes suggests a distinctive experimental test for cancellation of phase shifts in a random medium.Comment: 4 pages LaTeX. 2 Postscript figures include

    Anisotropic multiple scattering in diffuse media

    Get PDF
    The multiple scattering of scalar waves in diffusive media is investigated by means of the radiative transfer equation. This approach amounts to a resummation of the ladder diagrams of the Born series; it does not rely on the diffusion approximation. Quantitative predictions are obtained, concerning various observables pertaining to optically thick slabs, such as the mean angle-resolved reflected and transmitted intensities, and the shape of the enhanced backscattering cone. Special emphasis is put on the dependence of these quantities on the anisotropy of the cross-section of the individual scatterers, and on the internal reflections due to the optical index mismatch at the boundaries of the sample. The regime of very anisotropic scattering, where the transport mean free path \ell^* is much larger than the scattering mean free path \ell, is studied in full detail. For the first time the relevant Schwarzschild-Milne equation is solved exactly in the absence of internal reflections, and asymptotically in the regime of a large index mismatch. An unexpected outcome concerns the angular width of the enhanced backscattering cone, which is predicted to scale as Δθλ/\Delta\theta\sim\lambda/\sqrt{\ell\ell^*}, in contrast with the generally accepted λ/\lambda/\ell^* law, derived within the diffusion approximation.Comment: 53 pages TEX, including 2 tables. The 4 figures are sent at reques

    Resonant scattering in a strong magnetic field: exact density of states

    Full text link
    We study the structure of 2D electronic states in a strong magnetic field in the presence of a large number of resonant scatterers. For an electron in the lowest Landau level, we derive the exact density of states by mapping the problem onto a zero-dimensional field-theoretical model. We demonstrate that the interplay between resonant and non-resonant scattering leads to a non-analytic energy dependence of the electron Green function. In particular, for strong resonant scattering the density of states develops a gap in a finite energy interval. The shape of the Landau level is shown to be very sensitive to the distribution of resonant scatterers.Comment: 12 pages + 3 fig
    corecore