55 research outputs found
Quadratic Word Equations with Length Constraints, Counter Systems, and Presburger Arithmetic with Divisibility
Word equations are a crucial element in the theoretical foundation of
constraint solving over strings, which have received a lot of attention in
recent years. A word equation relates two words over string variables and
constants. Its solution amounts to a function mapping variables to constant
strings that equate the left and right hand sides of the equation. While the
problem of solving word equations is decidable, the decidability of the problem
of solving a word equation with a length constraint (i.e., a constraint
relating the lengths of words in the word equation) has remained a
long-standing open problem. In this paper, we focus on the subclass of
quadratic word equations, i.e., in which each variable occurs at most twice. We
first show that the length abstractions of solutions to quadratic word
equations are in general not Presburger-definable. We then describe a class of
counter systems with Presburger transition relations which capture the length
abstraction of a quadratic word equation with regular constraints. We provide
an encoding of the effect of a simple loop of the counter systems in the theory
of existential Presburger Arithmetic with divisibility (PAD). Since PAD is
decidable, we get a decision procedure for quadratic words equations with
length constraints for which the associated counter system is \emph{flat}
(i.e., all nodes belong to at most one cycle). We show a decidability result
(in fact, also an NP algorithm with a PAD oracle) for a recently proposed
NP-complete fragment of word equations called regular-oriented word equations,
together with length constraints. Decidability holds when the constraints are
additionally extended with regular constraints with a 1-weak control structure.Comment: 18 page
- …