2,115 research outputs found

    Revisiting the stability of spatially heterogeneous predator-prey systems under eutrophication

    Get PDF
    We employ partial integro-differential equations to model trophic interaction in a spatially extended heterogeneous environment. Compared to classical reaction-diffusion models, this framework allows us to more realistically describe the situation where movement of individuals occurs on a faster time scale than the demographic (population) time scale, and we cannot determine population growth based on local density. However, most of the results reported so far for such systems have only been verified numerically and for a particular choice of model functions, which obviously casts doubts about these findings. In this paper, we analyse a class of integro-differential predator-prey models with a highly mobile predator in a heterogeneous environment, and we reveal the main factors stabilizing such systems. In particular, we explore an ecologically relevant case of interactions in a highly eutrophic environment, where the prey carrying capacity can be formally set to 'infinity'. We investigate two main scenarios: (i) the spatial gradient of the growth rate is due to abiotic factors only, and (ii) the local growth rate depends on the global density distribution across the environment (e.g. due to non-local self-shading). For an arbitrary spatial gradient of the prey growth rate, we analytically investigate the possibility of the predator-prey equilibrium in such systems and we explore the conditions of stability of this equilibrium. In particular, we demonstrate that for a Holling type I (linear) functional response, the predator can stabilize the system at low prey density even for an 'unlimited' carrying capacity. We conclude that the interplay between spatial heterogeneity in the prey growth and fast displacement of the predator across the habitat works as an efficient stabilizing mechanism.Comment: 2 figures; appendices available on request. To appear in the Bulletin of Mathematical Biolog

    Dynamical lattice instability versus spin liquid state in a frustrated spin chain system

    Full text link
    The low-dimensional s=1/2 compound (NO)[Cu(NO3)3] has recently been suggested to follow the Nersesyan-Tsvelik model of coupled spin chains. Such a system shows unbound spinon excitations and a resonating valence bond ground state due spin frustration. Our Raman scattering study demonstrates phonon anomalies as well as the suppression of a broad magnetic scattering continuum for temperatures below a characteristic temperature, T<T*=100K. We interpret these effects as evidence for a dynamical interplay of spin and lattice degrees of freedom that might lead to a further transition into a dimerized or structurally distorted phase at lower temperatures.Comment: 5 pages, 6 figure

    Dynamic Properties of Molecular Motors in Burnt-Bridge Models

    Full text link
    Dynamic properties of molecular motors that fuel their motion by actively interacting with underlying molecular tracks are studied theoretically via discrete-state stochastic ``burnt-bridge'' models. The transport of the particles is viewed as an effective diffusion along one-dimensional lattices with periodically distributed weak links. When an unbiased random walker passes the weak link it can be destroyed (``burned'') with probability p, providing a bias in the motion of the molecular motor. A new theoretical approach that allows one to calculate exactly all dynamic properties of motor proteins, such as velocity and dispersion, at general conditions is presented. It is found that dispersion is a decreasing function of the concentration of bridges, while the dependence of dispersion on the burning probability is more complex. Our calculations also show a gap in dispersion for very low concentrations of weak links which indicates a dynamic phase transition between unbiased and biased diffusion regimes. Theoretical findings are supported by Monte Carlo computer simulations.Comment: 14 pages. Submitted to J. Stat. Mec

    Application of Johnson disribution to the problemof aerospace images classification

    Get PDF
    Solving the problem of aerospace images classification it was suggested to approximate distribution density of image characteristics by Johnson distribution. The possibilities of such approach were investigated and its availability was show

    M-Theory of Matrix Models

    Full text link
    Small M-theories unify various models of a given family in the same way as the M-theory unifies a variety of superstring models. We consider this idea in application to the family of eigenvalue matrix models: their M-theory unifies various branches of Hermitean matrix model (including Dijkgraaf-Vafa partition functions) with Kontsevich tau-function. Moreover, the corresponding duality relations look like direct analogues of instanton and meron decompositions, familiar from Yang-Mills theory.Comment: 12 pages, contribution to the Proceedings of the Workshop "Classical and Quantum Integrable Systems", Protvino, Russia, January, 200

    Calculation of the energy J -integral for bodies with notches and cracks

    Get PDF
    Abstract. The approximate solutions for calculation of the energy J -integral of a body both with a notch and with a crack under elastic-plastic loading have been obtained. The crack is considered as the limit case of a sharp notch. The method is based on stress concentration analysis near a notch/crack tip and the modified Neuber&apos;s approach. The HRR-model and the method based on an equation of equilibrium were also employed to calculate the J -integral. The influence of the strain hardening exponent on the J -integral is discussed. New aspects of the two-parameter J * c -fracture criterion for a body with a short crack are studied. A theoretical investigation of the effect of the applied critical stress (or the crack length) on the strain fields ahead of the crack tip has been carried out

    Strong-coupling effects in the relaxation dynamics of ultracold neutral plasmas

    Full text link
    We describe a hybrid molecular dynamics approach for the description of ultracold neutral plasmas, based on an adiabatic treatment of the electron gas and a full molecular dynamics simulation of the ions, which allows us to follow the long-time evolution of the plasma including the effect of the strongly coupled ion motion. The plasma shows a rather complex relaxation behavior, connected with temporal as well as spatial oscillations of the ion temperature. Furthermore, additional laser cooling of the ions during the plasma evolution drastically modifies the expansion dynamics, so that crystallization of the ion component can occur in this nonequilibrium system, leading to lattice-like structures or even long-range order resulting in concentric shells

    Layer-by-layer laser synthesis of Cu–Al–Ni intermetallic compounds and shape memory effect

    Get PDF
    Published ArticleWe have studied conditions for the synthesis of intermetallic phases in the Cu–Al–Ni system by selective laser sintering/melting, in particular by heating a powder mixture to 300°C. The effects of laser synthesis and heating on the microstructure of the intermetallic phases in the samples obtained have been studied using electron microscopy, optical metallography, and X-ray diffraction analysis. The results demonstrate high sinterability of stoichiometric mixtures. Resistivity measurements indicate that the samples exhibit a shape memory effect. We discuss the feasibility of producing biomicroelectromechanical systems using layerby- layer synthesis

    SU(2) Gluodynamics and HP1 sigma-model embedding: Scaling, Topology and Confinement

    Full text link
    We investigate recently proposed HP1 sigma-model embedding method aimed to study the topology of SU(2) gauge fields. The HP1 based topological charge is shown to be fairly compatible with various known definitions. We study the corresponding topological susceptibility and estimate its value in the continuum limit. The geometrical clarity of HP1 approach allows to investigate non-perturbative aspects of SU(2) gauge theory on qualitatively new level. In particular, we obtain numerically precise estimation of gluon condensate and its leading quadratic correction. Furthermore, we present clear evidences that the string tension is to be associated with global (percolating) regions of sign-coherent topological charge. As a byproduct of our analysis we estimate the continuum value of quenched chiral condensate and the dimensionality of regions, which localize the lowest eigenmodes of overlap Dirac operator.Comment: 22 pages, 18 ps figures, revtex4. Replaced to match published version (PRD, to appear
    corecore