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Abstract. The approximate solutions for calculation of the energy J -integral of a body both with a notch and
with a crack under elastic-plastic loading have been obtained. The crack is considered as the limit case of a sharp
notch. The method is based on stress concentration analysis near a notch/crack tip and the modified Neuber’s
approach. The HRR-model and the method based on an equation of equilibrium were also employed to calculate
the J -integral. The influence of the strain hardening exponent on the J -integral is discussed. New aspects of the
two-parameter J ∗

c -fracture criterion for a body with a short crack are studied. A theoretical investigation of the
effect of the applied critical stress (or the crack length) on the strain fields ahead of the crack tip has been carried
out.

Key words: elastic-plastic strain fields, HRR model, J -integral, notch, short and long cracks, two-parameter
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1. Introduction

Modern engineering structures made of materials with high toughness and low strength con-
tains the stress concentration locations, such as notches, holes, cracks, etc. Loading of these
structures is usually accompanied by plastic deformation in the neighborhood of stress con-
centration. Therefore, a description of the inelastic stress-strain fields ahead of a notch/crack
tip and calculation of fracture mechanics parameters are necessary to estimate the behavior of
a crack and structural integrity. As a result, models and criteria of elastic-plastic (nonlinear)
fracture mechanics are needed to obtain realistic assessment of fracture process of damaged
structures. Moreover, as a finite notch radius is introduced, a notch problem is much more
complicated than a crack problem (e.g., W. Guo, 2002). Theoretical studies of elastic-plastic
notch fields and fracture mechanics parameters are mainly limited to some simple cases.

Fracture mechanics parameters and criteria can be based on various elastic-plastic models
of a solid. The energy J -integral is the most appropriate and commonly used elastic-plastic
fracture parameter for description of the local elastic-plastic fields in the neighborhood of
stress concentration and for study of crack initiation and propagation. The evaluation of
the J -integral can be performed by numerical analysis and engineering estimation method.
Normally, numerical investigation has been based on elastic-plastic finite element method
(e.g., Atluri, 1985; Anderson, 1995; Rahman, 2001), elastic-plastic boundary element method
(e.g., Cisilino and Aliabadi, 1999). These methods allow calculating the J -integral for any
∗Author to whom correspondence should be addressed
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Figure 1. Geometry of a notch.

crack and body configuration and type of loading. The application of numerical methods in
fracture mechanics makes it possible to analyze elastic-plastic stress and strain fields in the
vicinity of any stress concentrator. However, the numerical analysis is enough expensive and
time-consuming to be used routinely in engineering calculations. Other problem is that these
numerical solutions are difficult to transfer from one body configuration or the material to
another.

At the same time, number of analytical elastic-plastic solutions for the estimation of the
stress concentration effect for bodies with different geometries is limited. Therefore, sim-
plified estimation approach for engineering calculations has to be developed to predict the
J -integral from viewpoint of elastic-plastic fracture theory. That is why the development of
approximate methods for the analysis of elastic-plastic bodies with a stress concentrator is an
important engineering problem.

The estimation technique consists of approximate J -integral equations as a function of
applied load, crack size, mechanical properties of the material and geometry of structure (e.g.,
Kumar, German and Shih, 1981; Matvienko, 1994; Rahman and Brust, 1997; Schwalbe and
Zerbst, 2000). The structural integrity assessment procedure (SINTAP) may be also regarded
as an approximate J estimation technique (e.g., Webster and Bannister, 2000).

The focus of this study is to find simple procedures for the computation of the equations for
J -integral to reduce the need for finite element method calculations. New estimation methods
have been developed to predict the J -integral of a body either with a notch or with a crack.
The methods are based on stress concentration analysis and the method of sections. Possible
application of the obtained formulas to analyze bodies of different geometries (including a
crack emanating from the stress concentrator), the critical state of a body with a short crack
and to estimate the stress and strain fields ahead of the short crack tip.

2. Calculation of the J-integral for a body with a notch

A body with a notch under a remotely applied tensile stress σ is considered. A notch with
the curvature radius ρ at the tip has flat surfaces parallel to the χ axis (Figure 1). To estimate
the stress and strain concentration, the energy J -integral suggested by Cherepanov (1979)
and Rice (1968) bas been employed. The integration path is the contour of the notch tip,
which is freed of stress. In this case, the J -integral can be represented by the following simple
expression

J =
∫ π/2

−π/2
W(θ)ρ cos θ dθ (1)
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Here W (θ) is the density of strain energy and θ is the angular coordinate of points on the
notch contour in the polar coordinate system (the pole is the center of the notch tip circle). It
is assumed as a first approximation that the distribution of the density of strain energy on the
surface of the notch tip arc can be estimated as

W = Wmax cos θ. (2)

Then, the J -integral given by Equation (1) is rewritten in the form

J = π

2
Wmaxρ. (3)

It was shown (Hajinski, 1983) that exact solutions of the stress intensity factor for typical
cases of loading follow from Equation (3).

The maximum of the density of strain energy W max in Equation (3) can be written as∫
σidεi . If εi max ≥ ε0 and the stress state is uniaxial, the value of Wmax for strain hardening

materials is obtained as follows

Wmax =
∫ ε0

0
σidεi +

∫ εimax

ε0

σidεi = σ 2
0

2E
+ σ∗

1 + m

(
ε1+m
i max − ε1+m

0

)
, (4)

where εmax is the maximum local strain on the notch tip surface. The stress is related to strain
for the elastic-plastic material by

σi = Eεi, σi < σ0

σi = σ∗εm
i , σi ≥ σ0,

(5)

where σ∗ = (ασ0)/ε
m
0 ; m is the strain hardening exponent and α is the constant value; ε0 =

σ0/E; E is the Young’s modulus; σ0 is the yield stress. The index i denotes the stress and
strain intensity. Substituting Equation (4) into Equation (3) leads to the following equation

J = π

2
ρ

[
σ 2

0

2E
+ σ∗

1 + m

(
ε1+m
i max − ε1+m

0

)]
. (6)

This expression allows finding the maximum intensity of strain and stress intensity on the
surface of the notch tip using the radius of curvature, the mechanical properties and the energy
J -integral determined either experimentally or theoretically.

The right hand-side of Equation (6) can be defined in terms of stress and strain concen-
tration factors. The stress and strain intensity concentration factors ahead of the notch tip at
θ = 0 are represented as follows

Kε = εi max

εi

, Kσ = σi max

σi

, (7)

where εi and σi are the applied stress and strain intensities. Taking into account Equations (5)
and (7), Equation (6) can be rewritten in the following form

J = π

2
ρ




σ 2
0

2E
+ σ∗

1 + m

[
σ 2

i

σ∗E
KεKσ −

(σ0

E

)1+m
]

,
1

Kt

≤ σi

σ0
< 1

σ 2
0

2E
+ σ∗

1 + m

[(
σi

σ∗

)(1+m)/m

KεKσ −
(σ0

E

)1+m

]
,

σi

σ0
≥ 1

(8)
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It is assumed that the material is plastically deformed in the neighborhood of stress con-
centration, whereas the applied stress intensity σi can be either below or above the yield
stress.

The Neuber’s formula modified by Makhutov (1981) (see also Makhutov, Matvienko and
Chernyakov, 1993) for the elastic-plastic deformation of the material in the neighborhood of
stress concentration is used to eliminate the term of KεKσ from Equation (8)

KεKσ

K2
t

= F, (9)

where

F = F(Kt , σi,m) = (Ktσi)
−n(1−m)[1−(σi−1/Kt )].

Here, σi = σi/σ0, Kt is the theoretical stress concentration factor and n is a function of Kt

and σi . The value of n is usually considered as a constant equal to 0.5.
Taking into account Equations (8) and (9), the following equations have been obtained. In

the initial stage of elastic-plastic deformation ahead of the notch tip for 1/Kt ≤ σ i < 1, the
J -integral is determined by

J = π

2
ρ

{
σ 2

0

2E
+ σ∗

1 + m

[
σ 2

i

σ∗E
K2

t F −
(σ0

E

)1+m
]}

. (10)

In the stage of deformation for σi ≥ 1, Equation (8) can be rewritten in the following form

J = π

2
ρ

{
σ 2

0

2E
+ σ∗

1 + m

[(
σi

σ∗

)(1+m)/m

K2
t F −

(σ0

E

)1+m

]}
. (11)

The J -integral has been investigated as a function of the applied stress and the strain
hardening exponent. It is attractive to use the normalized value of J/Je, where Je =
(πρK2

t /4E)σ 2
i is the elastic component of the J -integral (σi < 1/Kt ). The empirical constant

of the material α is taken equal to 1. Then, Equations (10) and (11) lead to

J

Je

= 1

(Ktσi)
2

(
1 − 2

1 + m

)
+ 2F

1 + m
(12)

for 1/Kt ≤ σi < 1 and

J

Je

= 1

(Ktσi)2

(
1 − 2

1 + m

)
+ 2F

(1 + m)(σi)(m−1)/m
(13)

for σi ≥ 1.
The tendency of the value of J/Je as the function of σi, m and Kt(n = 0.5) is shown in

Figure 2. The normalized J -integral increases with increasing σi and ability of the material to
be deformed plastically (i.e., with the decrease of m). The value of J/Je is weakly dependent
on the stress concentration factor Kt . The J -integral is equal to the elastic component Je for
σi < 1/Kt . In the applied stress range 1/Kt ≤ σi < 1, the J -integral is approximately
constant value (close to Je) and not greatly depended on σi . The value of J increases when
the applied stress exceeds the yield stress.

The calculation of the J -integral for the case of a body with a notch and a crack emanating
from it has also been analyzed (Figure 3). The crack is assumed to be short; i.e. the crack
length l is less than the radius of curvature ρ of the notch. Therefore, such crack is placed in the
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Figure 2. The normalized J -integral for a body with a notch. (a) Dependence of J/Je on the applied stress:
1 − m = 0.2, 2 − m = 0.5. (b) Dependence of J/Je on the hardening: 1 − σi = 0.8, 2 − σi = 1.2. Solid line -
Kt = 1.5; dashed line - Kt = 3.

Figure 3. Geometry of a notch with a small crack.

‘shadow’ of the local stress peak due to the concentration ahead of the notch tip. Considered
crack is intermediate between an ‘infinitely long’ crack (the concentration factor is equal
to Kt∞ = √

1 + (L/l), where L is the notch length) and an ‘infinitely short’ crack (the
concentration factor is equal to the theoretical stress intensity factor of a body with a notch
Kt ). In this case, the interpolation Neuber’s method, which was successfully used by Hajinski
(1983), can be employed. According to this method, the following stress concentration factor
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Kt∗ = 1 +
[

(Kt − 1)2(Kt∞ − 1)2

(Kt − 1)2 + (Kt∞ − 1)2

]1/2

(14)

must be used in Equations (10) and (11) to calculate the J -integral of a body with the notch
and crack.

3. Calculation of J-integral for a body with a crack

The crack is assumed to be interpreted as a thin notch. In the limit case ρ → 0, the notch is
transformed into a crack, and Equations (10) and (11) give the expression for the J -integral
of a body with a crack-type notch

J =




lim
ρ→0

πρK2
t F

2(1 + m)

σ 2
i

E
,

1

Kt

≤ σi < 1

lim
ρ→0

πρK2
t Fσ∗

2(1 + m)

(
σi

σ∗

)(1+m)/m

, σi ≥ 1

(15)

The limit value of F is expected to be equal to limKt→∞ F = 1 (Matvienko and Morozov,
1994). It is also worth that K = limρ→0

1
2

√
πρKtσ . In the case of a uniaxial stress state,

equation described above leads to the well-known expression of J -integral in terms of the
stress intensity factor K in the elastic region (J = G = K2/E, σi < 1/Kt ). In the plastically
deformed region ahead of the crack tip, the J -integral in the form (15) is defined as

J =




(
2

1 + m

)
K2

E
,

1

K
< σi < 1

(
2

1 + m

)
K2

σ∗

(
σi

σ∗

)(1−m)/m

, σi ≥ 1

(16)

It is necessary to pay attention to the fact that the range of the applied stress starts from 0
(1/Kt → 0). Therefore, there is not the elastic state ahead of the crack tip at any value of σi .
This is realistic situation for the materials. That is why the traditionally used and introduced
for elastic bodies formula J = Je = K2/E is idealized.

The J -integral estimation technique can be also based on the method of sections developed
previously by Matvienko (1997). The approximate formula of the J -integral for a plane with
a crack length 2l under a remote stress σ (Figure 4) has been obtained using the equation
of equilibrium. It is assumed that the force, that is not transmitted by the crack, is counter-
balanced by the additional force of the stress concentration near the crack tip (the origin of
coordinates is at the crack tip), i.e. the following equation ocurs∫ a

0
σydx = σ l. (17)

The stress σy and strain εy on the crack extension line for a strain hardening material are
taken according to the HRR model (Hutchinson, 1968; Rice and Rosengren, 1968)

σy = σ∗
(

J

σ∗Imx

)m/(1+m)

σ̃y(0,m)

εy =
(

J

σ∗Imx

)1/(1+m)

ε̃y(0,m),

(18)
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Figure 4. Distribution of the strain ahead of the crack tip on the line of crack extension in an infinite plate with a
through crack.

where Im is a undimensional value that depends on the stress state and the strain hardening
exponent m; σ̃y(0,m) and ε̃y(0,m) are constant values. The length a is determined by the
condition of equality of the strain εy (on the continuation of the crack) and the applied strain
ε at the point x = a, i.e.

σy = σ∗
(σ

E

)m

, σ < σ0

σy = σ, σ ≥ σ0

. (19)

These conditions allow writing the following equation

a =




J

σ∗Im

(
E

σ

)1+m

(σ̃y(0,m))(1+m)/m, σ < σ0

J

σ∗Im

(
σ∗σ̃y(0,m)

σ

)(1+m)/m

, σ ≥ σ0

. (20)

Using in the equation of balance (17), the stress σy in the form (18) and the value a

according to Equation (20), approximate equations of the J -integral become

J =




Im

(1 + m)(σ̃y(0,m))(1+m)/m

σ 2l

E
, σ < σ0

σ∗Im

1 + m

(
σ

σ∗σ̃y(0,m)

)(1+m)/m

l, σ ≥ σ0

. (21)

By substituting Equation (21) into Equation (20), the size of the region of strain concentration
ahead of the crack tip is defined in the form
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Figure 5. The energy J -integral for a body with a crack: 1 − m = 0.2, 2 − m = 0.5, 3 − m = 0.8.

a =




σ 1−mEm

σ∗(1 + m)
l, σ < σ0

l

1 + m
, σ ≥ σ0

. (22)

Therefore, in the case of the perfectly plastic and elastic materials, the value of a is determined
from the following relations: a = l for m = 0 and a = 1/2 for m = 1.

Manipulation of Equations (16) and (21), taking into account that K = σ
√

πl, shows
that these equations of the J -integral are fully compatible. Equation (16) at σi ≡ σ can be
rewritten in the following form

J =




2K2

(1 + m)E
,

σ

σ0
< 1

2K2

(1 + m)σ∗

(
σ

σ∗

)(1−m)/m

,
σ

σ0
≥ 1

. (23)

The tendency of J/Je for a body with a crack is similar to that for a body with a notch
(Figure 5). The value of J/Je increases with the decrease of the strain hardening exponent
and the increase of the applied stress. But in contrast to a body with a notch, the value of
J/Je = 2/(1 + m) is constant for a material with fixed m at the normalized applied stress
σ/σ0 < 1.

For other configuration of a body the stress intensity factor in Equation (23) must be written
as K = σ

√
πlY taking into account the correction function Y .

Thus, Equation (23) obtained for calculation of the J -integral allows the use of the energy
J -integral concept both in the experimental estimation of the fracture toughness of materials
and in the analysis of structural integrity of structures, since it is enough to know the stress
intensity factor, the applied load, the crack length and the mechanical properties of the material
(E, σ∗, and m) to determine the value of J .
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4. The two-parameter J∗
c -fracture criterion

The evaluation of structural integrity and the fracture toughness, addressing brittle and ductile
fracture, plastic collapse can be based on the failure assessment diagram or two-parameter
fracture criteria (e.g., Webster and Bannister, 2000). In the failure assessment diagram ap-
proach, both the comparison of the crack driving force with the material’s fracture toughness
and with the plastic load limit analysis is performed at the same time. Therefore, two paramet-
ers are calculated. One parameter is normalized load ratio and the second is the normalized
stress intensity factor. Above-mentioned approaches are valid both for significant plastic strain
and small cracks and for small plastic strain and large cracks. The two-parameter fracture
criteria are usually based on approximate account of the plastic state of the material ahead of
the crack tip. In addition to the two-parameter criteria for bodies with cracks, it is worth the
ultimate crack resistance (Morozov, 1999), the engineering treatment method (Schwalbe and
Zerbst, 2000), different modifications of the R6 method (Ainsworth and et al., 2000; Budden
et al., 2000; Motarjemi and Kocak, 2002) and others.

Here, the two-parameter energy fracture criterion proposed by Matvienko (1986) has been
discussed. This criterion is based on the relation between the J -integral and the strain on the
surface of the notch (crack) tip and the cumulative damage law (Matvienko, 2002). In this
case, a failure assessment diagram can be defined in terms of the critical J -integral1(

σc

σu

)1/m

−
(

σc

σf

)1/m

+
(

J

Jc

)1/(1+m)

= 1. (24)

From this criterion the condition of fracture for a body with a finite crack can be represented
in the form

J = J ∗
c , J ∗

c = Jc

[
1 − λ

(
σc

σu

)1/m
]1+m

. (25)

Here λ = 1 − (σu/σf )1/m, σu is the ultimate strength, σf is the true ultimate strength and
σc is the applied critical stress. In Equations (24) and (25) the critical value of the J -integral
(taking into account other criterion values) is denoted by the symbol J ∗

c . The J ∗
c-criterion

(25) defines the failure assessment diagram, based on the J -integral concept. The results of
calculation of the normalized critical J ∗

c-integral are given in Figure 6.
The two-parameter J ∗

c-fracture criterion allows the analysis of influence of the strain
hardening exponent m on the crack resistance of the material. For a linear elastic body with
a crack (m = 1, σu = σf , J(c) ∼ K2

(c) independently on the critical stress), the criterion (25)
gives Irwin’s one-parameter force criterion of fracture K = Kc. For materials with the strain
hardening exponent 0 < m ≤ 0.3 and σf /σu ≥ 2, the coefficient λ that characterizes the
material’ s hardening tends to unit because the contribution of the term (σu/σf )1/m in λ is
negligible, and the critical stress σc for a specimen with a crack of any size cannot exceed the
ultimate strength σu. For plastic materials at λ 	= 1, the applied critical stress for a specimen
(a structure) with a small (but finite) crack can exceed σu. In this case, the presence of the
crack in the specimen does not lead to a decrease of the strength compared with a specimen
without a crack (i.e., σc ≥σu

) if the following condition is met

J ≤ Jc

(
σu

σf

)(1+m)/m

. (26)
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Figure 6. Critical values of the energy J -integral for 12X18H9T steel. The curve is drawn in accordance with
Equation (25) at m = 0.2 and λ ≈ 1.

Therefore, this approach allows determining the crack length that does not lead to the decrease
of the specimen’s strength, i.e. σu ≤ σc < σf . The details of the criterion (25) and con-
nection with other two-parameter fracture criteria have been discussed in Refs. (Matvienko,
1986; Makhutov and Matvienko, 1998). The approach based on the two-parameter J ∗

c-fracture
criterion can be also regarded as an approximate J estimation technique.

5. The strain fields ahead of the short crack tip

The analysis of the stress and strain fields ahead of the crack tip can be also based on the
two-parameter J ∗

c-fracture criterion. The energy J -integral is a function of the crack length,
the applied stress, material properties and geometry of a body. Within the J ∗

c-criterion the
region of sufficiently small normalized critical stress σc/σc (or large cracks), in which the
one-parameter fracture criterion J = J ∗

c = Jc is valid, can be determined (Figure 6). For such
relatively long cracks, according to the HRR model, the elastic-plastic fracture toughness
J c characterizes the singular stress and strain fields ahead of the crack tip and controls the
failure process both for small-scale and for large-scale yielding (Matvienko and Morozov,
1987; Kang and Kobayashi, 1988). At the same time, in the region of significant large stress
σc/σu (short cracks) J < Jc (points 2 and 3 in Figure 6); i.e., the one-parameter J c criterion
is supplemented by the criterion of maximal normal critical stress. Thus, the two-parameter
fracture criterion in the form (25) is valid. How is changed the stress and strain field ahead of
the crack tip in this case?

To answer this question, the HRR model has been extended to the critical state of a body
with a short crack. It can be concluded that the value of J in Equation (18) is the right hand-
side of the criterion relation (25), i.e., J ∗

c . Therefore, the stress and strain distribution ahead
of the crack tip at the moment of crack growth initiation (within the J ∗

c-criterion) depends
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Figure 7. The strain distribution ahead of the crack tip for different lengths of critical crack. Lines 1, 2, 3 have the
same notation as in Figure 6 and correspond to the different crack lengths l = 27, 6.6 and 3.6 mm. The segments
of the χ axis 0 − ai (i = 1, 2, 3) represent the regions of significant strain gradient for different crack lengths.

not only on J c and other mechanical properties of the material but also on the applied critical
stress σc.

The size a of the zone, in which the singular stress and strain field is valid, is determined
by Equation (22). These formulas show that the size of the singular strain zone decreases with
decreasing crack length. The condition (22) can be considered as the boundary condition. On
the basis of the HRR model [formulas (18)] and the J ∗

c-criterion (25), the strain εy ahead of
the crack tip on the crack extension line is defined by the following

ε =




(
Jc

σ∗Imχ

)1/(1+m)

ε̃y(0,m)

[
1 − λ

(
σc

σu

)1/m
]

, χ < a

εc, χ ≥ a,

(27)

where εc is the applied critical strain.
The results of the calculation of εy for a center cracked tension specimen of 12X18H9T

stainless steel at θ = 0 (Equation (27)) are given in Figure 7. The mechanical properties of
the steel are the following: Jc = 480 MPa·mm, m = 0.2, σ∗ = 770 MPa, σ0 = 340 MPa,
σu = 620 MPa, and σf = 1600 MPa. The calculation has been carried out for specimens
with various crack lengths. The parameters of state are marked by points on the critical curve
(Figure 6). Figure 7 shows that increasing the applied critical stress σc. (or decreasing the crack
length l) leads to the decrease of the strain singular zone size and the increase of the remote
strain component εc; i.e., ‘spreading’ of the strain gradient occurs. Therefore, the singular
stress and strain fields of long cracks make a greater contribution in the whole picture of the
stress and strain state ahead of the crack tip. For short cracks, the critical applied parameters
of loading shade the singularity of the stress and strain fields ahead of the crack tip. This
considerable role of critical stress and strain in formation of the stress and strain fields ahead
of the short crack tip is supported by results of Makhutov and Domojirov (1989). It was shown
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that there is the effect of the regular terms of the stress tensor components on the size of the
plastic zone.

6. Conclusions

Approximate J -integral formulas of a body with a crack (notch) in terms of the stress intensity
factor (or the theoretical stress concentration factor), the applied load, the crack length (or the
radius of the notch), and the mechanical properties of the material have been obtained. The
HRR-model and the method of sections were also employed to estimate the J -integral of a
body with a crack.

New aspects of the two-parameter J ∗
c-fracture criterion describing a failure assessment

diagram of a body with long and short crack are discussed. The existences of small cracks,
which do not lead to the decrease of a structural strength, are shown. The approach based on
the two-parameter J ∗

c-fracture criterion can be also regarded as an approximate J estimation
technique.

Within the J ∗
c-criterion and the HRR model, the stress and strain fields ahead of a short

crack tip at a moment of the crack growth initiation is not only determined by the critical
J -integral and other mechanical properties but it depends on the applied critical stress σc.
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Endnotes

1Energy strain interpretation of the criterion has the form:
εc

εu

− εc

εf

+
(

J

Jc

)1/(1+m)

= 1, where

εu and εf are the ultimate and true ultimate critical strain, εc is the critical applied strain.
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