13 research outputs found

    Tunneling in a cavity

    Full text link
    The mechanism of coherent destruction of tunneling found by Grossmann et al. [Phys. Rev. Lett. 67, 516 (1991)] is studied from the viewpoint of quantum optics by considering the photon statistics of a single mode cavity field which is strongly coupled to a two-level tunneling system (TS). As a function of the interaction time between TS and cavity the photon statistics displays the tunneling dynamics. In the semi-classical limit of high photon occupation number nn, coherent destruction of tunneling is exhibited in a slowing down of an amplitude modulation for certain parameter ratios of the field. The phenomenon is explained as arising from interference between displaced number states in phase space which survives the large nn limit due to identical n−1/2n^{-1/2} scaling between orbit width and displacement.Comment: 4 pages Revtex, 2 PS-figures, appears in The Physical Review

    Driving-Induced Symmetry Breaking in the Spin-Boson System

    Full text link
    A symmetric dissipative two-state system is asymptotically completely delocalized independent of the initial state. We show that driving-induced localization at long times can take place when both the bias and tunneling coupling energy are harmonically modulated. Dynamical symmetry breaking on average occurs when the driving frequencies are odd multiples of some reference frequency. This effect is universal, as it is independent of the dissipative mechanism. Possible candidates for an experimental observation are flux tunneling in the variable barrier rf SQUID and magnetization tunneling in magnetic molecular clusters.Comment: 4 pages, 4 figures, to be published in PR

    Driven Tunneling Dynamics: Bloch-Redfield Theory versus Path Integral Approach

    Full text link
    In the regime of weak bath coupling and low temperature we demonstrate numerically for the spin-boson dynamics the equivalence between two widely used but seemingly different roads of approximation, namely the path integral approach and the Bloch-Redfield theory. The excellent agreement between these two methods is corroborated by a novel efficient analytical high-frequency approach: it well approximates the decay of quantum coherence via a series of damped coherent oscillations. Moreover, a suitably tuned control field can selectively enhance or suppress quantum coherence.Comment: 4 pages including 3 figures, submitted for publicatio

    Analytical solutions to the third-harmonic generation in trans-polyacetylene: Application of dipole-dipole correlation on the single electron models

    Full text link
    The analytical solutions for the third-harmonic generation (THG) on infinite chains in both Su-Shrieffer-Heeger (SSH) and Takayama-Lin-Liu-Maki (TLM) models of trans-polyacetylene are obtained through the scheme of dipole-dipole (DDDD) correlation. They are not equivalent to the results obtained through static current-current (J0J0J_0J_0) correlation or under polarization operator P^\hat{P}. The van Hove singularity disappears exactly in the analytical forms, showing that the experimentally observed two-photon absorption peak (TPA) in THG may not be directly explained by the single electron models.Comment: 10 pages, 4 figures, submitted to Phys. Rev.
    corecore