3,789 research outputs found

    A robust potential-based contact force solution approach for discontinuous deformation analysis of irregular convex polygonal block/particle systems

    Get PDF
    Contact interaction of two bodies can be modeled using the penalty function approach while its accuracy and robustness are directly associated with the geometry of contact bodies. Particularly, in the research fields of rock mechanics, we need to treat polygonal shapes such as mineral grains/particles at a mesoscale and rock blocks at a macroscale. The irregular shapes (e.g., polygons with small angles or small edges) pose challenges to traditional contact solution approach in terms of algorithmic robustness and complexity. This paper proposed a robust potential-based penalty function approach to solve contact of polygonal particles/block. An improved potential function is proposed considering irregular polygonal shapes. A contact detection procedure based on the entrance block concept is presented, followed by a numerical integral algorithm to compute the contact force. The proposed contact detection approach is implemented into discontinuous deformation analysis with an explicit formulation. The accuracy and robustness of the proposed contact detection approach are verified by benchmarking examples. The potential of the proposed approach in analysis of kinetic behavior of complex polygonal block systems is shown by two application examples. It can be applied in any discontinuous computation models using stepwise contact force-based solution procedures. © 2020, The Author(s)

    A cover-based contact detection approach for irregular convex polygons in discontinuous deformation analysis

    Get PDF
    Irregular polygon shapes (eg, with small edges or small angles) are usually encountered in the contact simulation of discrete block systems. Treatment of irregular polygons in contact detection process has critical effects on the robustness and efficiency of the discontinuous computation approach. The present work proposes a cover-based strategy to detect and solve contacts of irregular convex polygons in a robust and efficient way. Contact constraints of two polygons are represented by vertex-edge and edge-vertex contact covers in 2D. Two loops, namely vertex-edge loop and edge-vertex loop, and two filter criteria, namely the entrance filter criterion and the distance filter criterion, are used to establish the potential contact cover list of two neighbor polygons. The initial active and closed contact covers are chosen based on block configuration at the beginning of the step and they are then updated in the open-close iteration process using proposed criteria. This strategy is implemented in discontinuous deformation analysis. The robustness of the proposed cover-based approach and the conventional type-based approach in handling contact of irregular blocks is verified first. Then, the contact analysis efficiency of the cover-based approach with different contact tolerances is evaluated. This cover-based method can be extended to 3D case for efficient and robust contact analysis of irregular polyhedral blocks. © 2020 The Authors. International Journal for Numerical and Analytical Methods in Geomechanics published by John Wiley & Sons Lt

    Simultaneous Detection of Chlamydia Trachomatis, Neisseria Gonorrhoeae, Ureaplasma Urealyticum by Multiplex PCR-Running

    Get PDF
    Chlamydia trachomatis (CT), Ureaplasma urealyticum (UU) and Neisseria gonorrhoeae (NG) are the most common pathogens of sexually transmitted infections (STIs), frequently founded in urogenital infections, and showed a criminal role in increasing the risk of potential adverse outcomes. In this study a multiplex PCR assay for the simultaneous detection and accurate identification of 3 clinically relevant pathogens of STIs, i.e., CT, NG and UU in a single tube was developed and evaluated. The limits of detection for the multiplex PCR assay were ~10 copies of DNAs per reaction. This assay has comparable clinical sensitivity to the conventional monoplex real-time PCR assay and considerable potential to be routine molecular diagnostic tool for simultaneous identification of STIs at relatively low cost due to multiplexing

    Stone-Wales Defects Preserve Hyperuniformity in Amorphous Two-Dimensional Materials

    Full text link
    Crystalline two-dimensional (2D) materials such as graphene possess unique physical properties absent in their bulk form, enabling many novel device applications. Yet, little is known about their amorphous counterparts, which can be obtained by introducing the Stone-Wales (SW) topological defects via proton radiation. Here we provide strong numerical evidence that SW defects preserve hyperuniformity in hexagonal 2D materials, a recently discovered new state of matter characterized by vanishing normalized infinite-wavelength density fluctuations, which implies that all amorphous states of these materials are hyperuniform. Specifically, the static structure factor S(k) of these materials possesses the scaling S(k) ~ k^{\alpha} for small wave number k, where 1<=\alpha(p)<=2 is monotonically decreasing as the SW defect concentration p increases, indicating a transition from type-I to type-II hyperuniformity at p ~= 0.12 induced by the saturation of the SW defects. This hyperuniformity transition marks a structural transition from perturbed lattice structures to truly amorphous structures, and underlies the onset of strong correlation among the SW defects as well as a transition between distinct electronic transport mechanisms associated with different hyperuniformity classes

    Pulmonary alveolar type I cell population consists of two distinct subtypes that differ in cell fate.

    Get PDF
    Pulmonary alveolar type I (AT1) cells cover more than 95% of alveolar surface and are essential for the air-blood barrier function of lungs. AT1 cells have been shown to retain developmental plasticity during alveolar regeneration. However, the development and heterogeneity of AT1 cells remain largely unknown. Here, we conducted a single-cell RNA-seq analysis to characterize postnatal AT1 cell development and identified insulin-like growth factor-binding protein 2 (Igfbp2) as a genetic marker specifically expressed in postnatal AT1 cells. The portion of AT1 cells expressing Igfbp2 increases during alveologenesis and in post pneumonectomy (PNX) newly formed alveoli. We found that the adult AT1 cell population contains both Hopx+Igfbp2+ and Hopx+Igfbp2- AT1 cells, which have distinct cell fates during alveolar regeneration. Using an Igfbp2-CreER mouse model, we demonstrate that Hopx+Igfbp2+ AT1 cells represent terminally differentiated AT1 cells that are not able to transdifferentiate into AT2 cells during post-PNX alveolar regeneration. Our study provides tools and insights that will guide future investigations into the molecular and cellular mechanism or mechanisms underlying AT1 cell fate during lung development and regeneration
    • …
    corecore