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Abstract
Contact interaction of two bodies can be modeled using the penalty function approach while its accuracy and robustness are

directly associated with the geometry of contact bodies. Particularly, in the research fields of rock mechanics, we need to

treat polygonal shapes such as mineral grains/particles at a mesoscale and rock blocks at a macroscale. The irregular shapes

(e.g., polygons with small angles or small edges) pose challenges to traditional contact solution approach in terms of

algorithmic robustness and complexity. This paper proposed a robust potential-based penalty function approach to solve

contact of polygonal particles/block. An improved potential function is proposed considering irregular polygonal shapes. A

contact detection procedure based on the entrance block concept is presented, followed by a numerical integral algorithm to

compute the contact force. The proposed contact detection approach is implemented into discontinuous deformation

analysis with an explicit formulation. The accuracy and robustness of the proposed contact detection approach are verified

by benchmarking examples. The potential of the proposed approach in analysis of kinetic behavior of complex polygonal

block systems is shown by two application examples. It can be applied in any discontinuous computation models using

stepwise contact force-based solution procedures.

Keywords Block system � Explicit discontinuous deformation analysis � Irregular polygon � Penalty function method �
Potential contact force

List of symbols
up Displacement of point p in a block

xp; yp Coordinate of point p

xo; yo Coordinate of block centroid

uo; vo Translation of block centroid o along axes ox

and oy

ro Block rotation angle about axed oz

ex; ey; cxy Constant normal and shear strain of a block

Ti xp; yp
� �

2� 6 transform matrix of point p in block i

tn Beginning of step n

tnþ1 Ending of step n

tnþ1=2 Half step instant of step n

tn�1=2 Half step instant of step n� 1

h Time step size of step n

di Displacement vector of degree of freedom for

block i

Ddni Incremental displacement vector for block i at

step n
_di Velocity vector of degree of freedom for block

i

_d
n�1=2
i

Velocity vector for block i at half step of step

n� 1
_dni Velocity vector for block i at beginning of step

n
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_d
nþ1=2
i

Velocity vector for block i at half step of step

n
€di Acceleration vector of degree of freedom for

block i
€dni Acceleration vector for block i at beginning of

step n

Mi Mass matrix of block i

Ci Damping matrix of block i

Ki Elastic stiffness matrix of block i

Fi Force vector of block i

Fn
i Force vector of block i at beginning of step n

Fn
CP Force vector of contact polygon at beginning

of step n

Fn
TP Force vector of target polygon at beginning of

step n

q Block density (kg/m3)

E Block elastic modulus (Pa)

l Block Poisson’s ratio

a Damping coefficient proportional to block

mass

b Damping coefficient proportional to block

stiffness

A Block A

B Block B

E A;Bð Þ Entrance block of A and B

a0 A reference point

pvi Coordinate vector of a node i

vie Vector of edges beginning from node i

pej Coordinate vector of a point on edge j

nej Unit out normal vector of edge j

CP Contact polygon

TP Target polygon

IP Intersection polygon

uCP Potential function of contact polygon

uTP Potential function of target polygon

ruCP Gradient of potential function for contact

polygon

ruTP Gradient of potential function for target

polygon

f ngCP Global normal contact force on contact

polygon

f
ng
TP

Global normal contact force on target polygon

SIP Area of intersection polygon

LIP Boundary of intersection polygon

nIP Unit normal vector of intersection polygon

boundary

kn Normal penalty value (Pa)

kt Tangential penalty value (N/m)

Xb The point set of a block

dexit The shortest path for a point to exit a polygon

H A unified value in potential function

xp Coordinate vector of point p

xei Coordinate vector of a point on edge i

deip Perpendicular distance of point p and edge i

lei The line edge i belonging to

lsk Integral segment sk on an edge

Lsk Length of segment sk

pa; pb Two ending points of segment sk

pa, pb Coordinate vector of point pa and pb
pk Coordinate vector of loading point on segment

sk

f nei Integral of normal contact force on edge i

f nsk Integral of normal contact force on segment sk

ng Unit normal vector of global contact force on

contact polygon

pg Coordinate vector of loading point of global

normal contact force

lng The acting line of global normal contact force

ltg The acting line of global tangential contact

force

d The accumulated relative displacement of two

contact polygon

dn d at beginning of step n

Ddn Incremental relative displacement at step n

dnor Normal components of d

dnnor dnor at beginning of step n

dtan Tangential components of d

dntan dtan at beginning of step n

s Relative sliding direction

sn s at beginning of step n

f tgCP Global tangential contact force on contact

polygon

f tgTP Global tangential contact force on target

polygon

f tgn�1
The frictional force for CP at beginning of step

n� 1

/ Friction angle of contact surface

h Angle of inclined plane

DugCP Incremental displacement of contact point in

CP in step n

DugTP Incremental displacement of contact point in

TP in step n

1 Introduction

Contact occurs almost everywhere in our daily life [29, 42],

and it is involved in scientific and engineering problems

with a broad scale range (e.g., interaction of particle in air

with a scale of lm, collision of planet and comet in space

with a scale of km). Particularly, contact of mesoscale
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mineral particles and macroscale rock blocks is of great

important in the research fields of rock mechanics, as the

strong relevance of geometrical and physical properties of

the discrete bodies and their interfaces to the deformation

and strength of rock material and the safety of engineering

activities. In the research of the relationship of mesoscale

grain properties and macroscale rock deformation and

strength properties, the Voronoi-based element shape is

commonly used [19, 38, 46, 53]. In the analysis of rock

block systems, an assembly of polygonal block is often

formed by the intersection of joints/boundaries

[9, 11, 20, 34, 45, 54, 58]. Compared to circular/spherical

shape, the polygonal/polyhedral shape brings some diffi-

culties for mechanical analysis of block/particle assembles,

such as treatment of non-smooth contact normal change at

vertices [1, 5, 40, 55, 61, 62], treatment of quasi-parallel

edges [63], and the contact type detection of irregular

polygons with small edges or small angles.

Solution of contact should consider both the geometrical

and physical properties of the contact interfaces. The

contact state and contact force are determined by the

geometrical relationship of two bodies and the interface

constitutive model, which lead to strong nonlinear prop-

erties. Many numerical methods have been proposed to

solve the mechanical and coupled hydro-thermal–me-

chanical response of a model with discontinuities by indi-

rect [37, 66, 67] or direct consideration of contact

[21, 22, 43, 50]. Among them, the ‘‘discrete element’’

approaches allow both finite displacement, rotation, and

detachment of discrete bodies and recognize new contacts

automatically [3]. The commonly used approaches

belonging to the discontinuous type include rigid block

spring method (RBSM) [52], discrete element method

(DEM) [2], discontinuous deformation analysis (DDA)

[6, 24, 33, 59], the combined finite-discrete element

method (FDEM) [26], and the numerical manifold method

(NMM) [13, 18, 23]. The solution strategies of these dis-

continuous models can be mainly classified into two types:

the explicit contact force-based solution approach and the

implicit displacement-based solution approach. The expli-

cit approaches detect contacts and compute contact forces

for the integration of block/particle displacement in each

step. By contrast, the implicit approaches detect contacts

and solve a global equation of motion that consider the

inequality contact constraints. The explicit approaches are

restricted by a critical time step, while the implicit

approaches require the convergence of contact states. In

this paper, the focus is given on the accuracy and efficiency

of the explicit approach in solution of polygonal

block/particle systems with irregular shapes.

The major issues in explicit contact analysis approach

are the detection of contact and computation of contact

force. The contact detection is usually proceeded using a

two-phase strategy that includes a rough search phase to

locate neighbor block pairs and a delicate search phase to

find contact types or obtain overlapping volumes [60]. The

algorithms to detect neighbor block pairs are well estab-

lished, such as the no-binary search [27], double-ended

spatial sorting [31], and CGrid algorithms [41]. In this

paper, the focus is given on the delicate search algorithms

for polygons, which can be classified into two types: (1)

type-based search and (2) overlap-based search. As stated

in [1, 5, 55, 63], there are some embedded difficulties in

treating singularity at vertices and irregular shapes. By

contrast, the overlap-based detection algorithm aims to

establish a structure of overlapping area (in two-dimen-

sional problems) or overlapping volume (in three-dimen-

sional problems), and contact force can be computed using

the penalty function approach on the basis of potential

[8, 12, 28] of the contact bodies. In this paper, the overlap-

based contact solution approach is used in view of its

advantages in treating polygonal shape-induced difficulties.

The potential-based penalty function approach [28]

provides a robust framework for contact force computation

of two contacting bodies. Some recent improvements

include the redefined potential function for triangles with

clear physical meaning [49], the improved distance

potential for convex polygons [56], concave polygons [7]

and convex polyhedra [57], the potential traction based on

triangle meshes [47] and tetrahedral element [48], robust

potential function for irregular polyhedra [65], and the

smooth contact algorithm [17]. In this paper, the original

contact potential-based penalty function method [28] is

improved to be suitable for polygons with small edges,

small angles, or small faces. The improvement originates

from the basic idea ‘‘a penetrated point in a polygon will be

pushed out along the shortest path.’’ On this basis, a new

contact potential function is defined and a novel contact

force computation approach is proposed, including the

geometrical associated algorithms of overlap examination

and intersection polygon construction, and the physical

associated approach to compute the contact force with a

numerical integral scheme.

This paper begins with the formulation of the explicit

DDA approach based on explicit representation of contact

force. Then, the improvements on the potential function

methods and the computation of contact force (normal

forces and tangential forces) are introduced, with particular

focus on some key algorithms in contact detection and

contact force computation process. The accuracy and

robustness of the improved approach are verified by

benchmarking contact scenarios, and its potential in kinetic

analysis of complex block systems is further investigated

by the application examples. A summary of the proposed

approach is given in the last section.
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2 Explicit solution approach based
on potential contact force

The contact force-based solution approach is applied in the

original framework of two-dimensional discontinuous

deformation analysis. The displacement function, equation

of motion, and stepwise solution procedure with the

explicit formulation are briefly introduced.

2.1 Displacement function

The linear displacement assumption in original DDA pro-

gram is still applied in this paper. The displacement

up xp; yp
� �

of point p in block i is computed by

up ¼ Ti xp; yp
� �

di; ð1Þ

where Ti xp; yp
� �

is a transform matrix similar to the shape

function matrix with dimensions of 2� 6 and di is the

degree of freedom in terms of block centroid displacement

and block constant strain. di is represented by

di ¼ uo vo ro ex ey cxy
� �T ð2Þ

where uo; vo; ro are block centroid translation along axes ox

and oy; ro is rotation angle about axes oz; and ex; ey and cxy
are the constant normal and shear strain. The transform

matrix Ti xp; yp
� �

is computed by

Ti xp; yp
� �

¼ 1 0 �yt xt 0 yt=2
0 1 xt 0 yt xt=2

� �
ð3Þ

where xt ¼ xp � xo, yt ¼ yp � yo, and xo; yoð Þ denotes the

centroid coordinate of block i.

2.2 Equation of motion

Kinematics and dynamics of a block/particle system are

characterized by the contact interaction mechanism of

discrete bodies. The kinetic properties of a deformable

block/particle can be described by the equation of motion,

which can be established by minimizing the potential

energy [4, 33],

Mi
€di þ Ci

_di þKidi ¼ Fi ð4Þ

where Mi, Ci, Ki, and Fi represent the mass matrix,

damping matrix, stiffness matrix, and force vectors of

block i; the dimension of the matrix and vectors are 6� 6

and 6� 1 respectively; and _di, €di are the first-order and

second-order derivative of the unknown vector di.

Mi, Ci, and Ki can be obtained by the following integral

format,

Mi ¼
ZZZ

qTT
i TidSi ð5aÞ

Ki ¼
ZZZ

EidSi ð5bÞ

Ci ¼ aMi þ bKi ð5cÞ

where Ti is the transform matrix as in Eq. (3); E is the

elastic stiffness matrix; and a and b are two coefficients

associated with the damping proportional to the mass and

stiff terms. Fi includes all external forces (e.g., point force,

surface stress), contact force vectors, and initial stress force

vectors. Details of the above matrix can refer to [33].

2.3 An explicit approach

The global equation of motion of a block system can be

established by minimizing the global potential energy

function that includes the contact potential energy with the

penalty function format [64]. The original DDA uses an

implicit time integration approach to solve the global

equation of motion, which needs to solve the global matrix

each step [15]. In addition, some explicit time integration

approaches that directly use contact forces to solve Eq. (4)

for each block separately are also proposed

[7, 25, 30, 47, 51, 64]. For the computation of incremental

displacement from time tn to tnþ1, the velocity Verlet

approach [51] solves Eq. (4) at tn and use the obtained

acceleration term to compute the incremental displace-

ment; the predictor–corrector approach and its modified

version [64] solve Eq. (4) at tnþ1 with a predicted contact

force and then correct the incremental displacement; and

the direct approach solves Eq. (4) at tnþ1 with the contact

force obtained at tn using the either the Newmark inte-

gration approach [30, 47] or generalized-a approach [7]. A

comprehensive comparison of the velocity Verlet

approach, constant acceleration integration approach, and

the predictor–corrector solution approach can be found in

[16, 64].

In this paper, the velocity Verlet approach [32, 51] is

used for time integration of the equation of motion. For the

analysis of the physical process from time tn to

tnþ1 ¼ tn þ hð Þ, recall Eq. (4) at tn,

Mi
€dni þ Ci

_dni ¼ Fn
i ð6Þ

where Kid
n
i in Eq. (4) is added to Fn

i with the vector format

of step initial stress. In this paper, Ci
_dni is not considered

and details of the coefficient choice can refer to [14]. The

acceleration term, €dni , can be obtained by solving Eq. (6);

the velocity at tnþ1=2 ¼ tn þ h=2ð Þ can be can be computed

by
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_d
nþ1=2
i ¼

_dni þ
h

2
€dni if _dni is know

_d
n�1=2
i þ h€dni if _d

n�1=2
i is know

8
<

:
ð7Þ

The incremental displacement in this step can be

obtained by

Ddni ¼ dnþ1
i � dni ¼ h _d

nþ1=2
i ð8Þ

Note that the model configuration is updated each step

and dni in Eq. (8) becomes zero automatically.

Given the Initial condition and boundary conditions, the

deformation and displacement of a discrete body system

can be obtained stepwise using Eqs. (6–8). In this paper,

the focus is given on the formulation of contact force and

its contribution to force term Fn
i in Eq. (6).

3 The improved potential-based contact
approach

The concept of ‘‘contact potential’’ is initially proposed by

[28] in their work on penalty function method for com-

bined finite-discrete element method, and it is used for

contact force computation among triangles and tetrahe-

drons. The definition of potential has been improved for

triangles [49], convex polygons [56], convex polyhedra

[57], concave polygons [7], and irregular polyhedra [65].

The finite element topology was also applied to construct a

smooth potential field in FDEM simulations [17]. How-

ever, it still lacks a unified and robust definition for

polygonal shapes when irregular shapes (such as small

angles and small edges) are encountered. To overcome

these shortcomings, an improved potential definition is

proposed and the work is detailed in this section.

The contact solution procedure in explicit solution

approach can be conducted with two steps: (1) a contact

detection step to judge the body overlap and to construct

the intersection shape, and (2) a force computation step to

obtain the contact force based on the intersection shape and

the body potential. The improvement toward these two

steps is detailed in Sects. 3.1 and 3.2, respectively. More-

over, a solution procedure for contacts of polygons and

boundaries is discussed in Sect. 3.3.

3.1 Detection of contact

The first step of a contact solution procedure is the judg-

ment of contact states and extraction of the geometrical

information. For the proposed model, it consists of a three-

sub-step procedure: (1) neighbor search; (2) overlap

examination; and (3) intersection polyhedron construction.

3.1.1 Neighbor search

This is a common phase for all kinds of approaches that

need to solve contacts of discrete body assembly. In this

phase, a neighbor body list will be established for each

discrete body. The efficiency of this detection phase

becomes significantly important with increasing body

numbers. Many algorithms have been published to enhance

the computational efficiency in neighbor search process,

such as the grid-based searching algorithm [2], the no-bi-

nary search algorithms [27] for discrete bodies of similar

sizes, the double-ended spatial sorting algorithm [31], the

CGrid algorithm [41] for discrete bodies of various sizes,

and the multi-shell cover algorithm for polyhedra [39, 44].

The neighbor search algorithm should be chosen according

to the distribution feature of the discrete body system.

3.1.2 Overlap examination

Although some polygons are marked as neighbor pairs after

detection of neighbor block pair, they may not contact at

the current configuration. Overlap examination is a detec-

tion step to exclude the neighbor polygon pairs that are

near but no-in-contact. The next step to compute the

intersection polygon will only be triggered if overlap

occurs for a neighbor polygon pair.

Overlap checking of two close bodies is a typical topic

in computational graphics and discontinuous computation

methods. It is essentially, from a mathematical view,

relationship judgment of two sets. This judgment can be

simplified with the concept of entrance blocks [35]. The

overlap judgment of two polygons can be simplified into

the examination of a chosen reference point and their

entrance block. For two polygons termed as polygon A and

polygon B, choosing the centroid of polygon A as the ref-

erence point ao, the entrance block E a; bð Þ is defined by

E A;Bð Þ ¼ B� Aþ aO ¼
[

a2A;b2B
b� aþ a0ð Þ ð9Þ

It has been proofed that the entrance block of two

convex polygons is still convex polygons [35]. Overlap

status of two convex polygons A and B can be judged by a

point-in-polygon examination using reference point a0 and

entrance block E A;Bð Þ.
The overlap examination is proceeded in two steps. The

first step is to obtain the boundaries of the entrance block

that formed by an entrance block computation of the ver-

tices and edges from A and B, respectively. In this step,

some vertex-edge pairs that do not form valid entrance

candidate [61] will be omitted. Algorithm detail of this step

is shown in Table 1. The second step is to judge if the

reference point is inside the entrance block. If ao is in

E A;Bð Þ, overlap occurs; if ao is out of E A;Bð Þ, two blocks
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are detached. Details of the algorithm are shown in

Table 2.

An example to check overlap of two convex polygons is

shown in Fig. 1. In this example, block B is fixed, and

position of block A2 is obtained by translating A1.

E A1;Bð Þ ¼ E A2;Bð Þ when the centroids c1 and c2 of

polygon A1 and A1 are used as the reference point. As

illustrated in Fig. 1, c1 62 E A1;Bð Þ equal to A1 \ B ¼ ;,
while c2 2 E A2;Bð Þ equal to A2 \ B 6¼ ;.

3.1.3 Intersection computation

The intersection polygon (IP) will be constructed if overlap

of two polygons occurs. As it is prior known that the

intersection polygon of two convex polygons is still

Table 1 The proposed algorithm to form entrance block boundaries of two convex polygons

Table 2 The proposed algorithm to judge position of reference point a0 and convex entrance block E A;Bð Þ

Fig. 1 Illustrations of overlap judgment based on entrance block

concept
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convex, a simple polygon cutting algorithm can be used to

construct the intersection polygon. The two blocks from the

neighbor block pair are termed as contact polygon (CP) and

target polygon (TP), respectively. The lines extended from

each edges of CP will be cycled to cut the TP, and in each

cycle the newly generated polygon that locates at the half

space below the cutting line will be stored for further

operation. This cutting process is illustrated in Fig. 2. After

the cycling of each CP edges, the remaining polygon is IP.

Details of the algorithm are shown in Table 3.

3.2 Formulation of contact force

3.2.1 Potential contact force

For a neighbor polygon pair, choosing anyone as the con-

tact polygon (CP), the remaining one is the target polygon

(TP). If overlap of CP and TP occurs, their intersection

forms the intersection polygon (IP). As shown in Fig. 3, the

global normal contact force f ngCP acting on CP can be

computed by integrating df nCP on IP,

f ngCP ¼
Z

SIP

ruCP �ruTPð ÞdSIP ð10Þ

where uCP and uTP are the potential functions for the CP

and TP, respectively; SIP denotes the area of IP. The global

contact force f ngTP on TP has the same magnitude and

opposite direction compared to f ngCP. As uCP and uTP are

continuous functions, the contact force f ngCP can be equiv-

alently computed by the integral over the IP boundary LIP
[28],

f ngCP ¼
Z

LIP

uCP � uTPð ÞnIPdLIP ð11Þ

where nIP denotes the unit normal vector of a boundary

integral point that point outside of IP.

3.2.2 New potential function definition

In analysis of a rock block system or a mineral particle

assembly, there might be irregular polygons with edges or

angles smaller than a characteristic value. These irregular

shapes can cause inaccuracy, inefficiency, or errors in some

existing contact solution approaches. Specially, for the

potential-based contact solution approaches, there still lack

a robust potential function definition for arbitrarily shaped

polygons with above-mentioned irregular shapes. A new

definition of potential function is proposed in this section,

and the results are compared with previous approaches

[56].

In this paper, the potential function for a polygon is

redefined based on the concept ‘‘a point penetrated in a

polygon will always be pushed out along the shortest

path.’’ For a point belonging to a polygon, once the shortest

distance dexit to exit a polygon is determined, the potential

at that position can be obtained. The potential of a point p

in a polygon Xb is defined as

u pð Þ ¼
0; p 62 Xb

kn �
dexit
H

; p 2 Xb

(

ð12Þ

where kn is the normal penalty parameter; H is a unit length

value that can be set to average length of all polygon edges

of the assembly; dexit is the shortest distance for point p to

exit polygon Xb. To keep energy conservation in contact,

the potential values of any points on polygon boundary

should be equal and the definition satisfies this

requirement.

Equation (12) gives the potential function definition of

both convex and concave polygons. As the potential

function values in IP will be used for computation of

contact force, the difficulty lies in how to obtain the dis-

tribution of the potential function in an arbitrarily shaped

polygon. Munjiza and Andrew [28], Yan and Zheng [49],

and Xu et al. [47] show the computation of potential

function values in a triangle. Zhao et al. [56] give the

computation methods for potential function of convex

polygon based on the subdivision strategy. Fan et al. [7]

give the computation of potential function for arbitrarily

shaped polygon based on the classification of contact type.

However, these definition and computation approach may

lead to robustness problem or inaccuracy when polygon

with small angles or small edges is involved in the block

assembly.

Using this definition for convex polygons, the shortest

distance dst can be obtained by

dexit ¼ min deip
�� ��� �

; ei 2 oXb; p 2 Xb ð13Þ

where ei represent boundary edge i of the polygon Xb; p is

the point whose potential value is to be computed; and deip
Fig. 2 Illustrations of a cutting step in which a line cuts the original

polygon into two sub-polygons
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is the perpendicular distance of point p to boundary edge ei.

Assume xp and xei are the coordinate vectors of point p and

an arbitrary point on ei, nei is the unit normal vector of ei
that points outwards of Xb, and deip can be computed by

deip ¼ nei � xei � xp
� �

ð14Þ

The potential of a point in a convex polygon can be

computed conveniently using the proposed definition in

Eqs. (12)–(14), even for irregular shapes with small edges

or small angles. Additionally, with the same H value in the

potential computation of each polygon, it ensures the

contact potential of the points with the same penetrations

keeps equal. Figures 4 and 5 show some examples of the

potential distribution in polygons. In these examples, kn ¼
1 Pa and H ¼ 1 m. Figure 4 shows the comparison of the

potential distribution in a polygon with small edges with

the proposed function (12) and the previous definition [56].

For a polygon with small edges, there would be a large

inner part without a valid potential definition when the

previous definition is used. This problem may become

significant when relatively large penetration is allowed in

analysis of a block system with irregular polygonal shapes.

By contrast, the proposed definition ensures the potential

value can be obtained for each point inside a polygon.

Table 3 The proposed algorithm for computation of intersection polygon

Fig. 3 Illustrations of the contact polygon (CP), target polygon (TP),

intersection polygon (IP), and potential contact force

Fig. 4 Comparisons of previous and current approaches in description

of potential field of a polygon with small edges: a result of previous

sub-polygon approach where a large inner part exists; b result of

current shortest-path approach

Fig. 5 An example of the potential field in a concave polygon using

the current shortest-path definition
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In Fig. 5, the potential distribution in a concave polygon

using the definition of (12) is shown. This distribution is

obtained by decomposing the concave polygon into six

convex ones by demarcation lines. However, this paper

focuses on convex shapes and decomposition of an arbi-

trarily shaped concave polygon is beyond our scope.

3.2.3 Numerical integral segments

With the definition in Eq. (12), the distribution of potential

value on boundary edges of IP is piecewise linear. The key

issue for the integral of Eq. (11) is to find all demarcation

points which divide the potential field along an edge into

several linear distribution pieces. If the all demarcation

points on an edge is obtained, the integral of potential on an

edge can be computed accurately piece by piece. Then, the

total contact force can be obtained by adding the accu-

mulated force vectors of all IP edges.

The effects of small edges are considered in this paper.

If the length of a CP or TP edge is smaller than a specified

tolerance, a virtual polygon node will be generated by

intersecting the two bisection projection lines of the two

angles neighboring the small edge. Both the real nodes and

virtual nodes of CP or TP are used in locating the demar-

cation points.

The potential demarcation points on a boundary edge of

IP are obtained as follows:

(1) The beginning, ending, and central point of the IP

edge are chosen as initial demarcation points.

(2) If the centroid point is on boundary of CP, the

potential values of points uCP along the edge are all

zero and go to step (3); if the centroid point is not on

boundary of CP, the intersection points of the edge

and the rays of angle bisector starting from CP nodes

and CP virtual nodes will be added.

(3) If the centroid point is on boundary of TP, the

potential values of points uTP along the edge are all

zero and go to step (4); if the centroid point is not on

boundary of TP, the intersection points of the edge

and the rays of angle bisector starting from TP nodes

and TP virtual nodes will be added.

(4) All points obtained from steps (1) to (3) will be

sorted from the beginning to the ending of the IP

edge.

Figure 6 illustrates the demarcation points computation

process of an IP edge corresponding to a polygon (either

CP or TP). If the polygon is CP, the demarcation points

include beginning, central, and ending points of the edge,

and all intersection points of the edge and rays of angle

bisector starting from nodes or virtual nodes of CP. After

locating all demarcation points, the edge will be naturally

divided into several integral segments.

3.2.4 Formulation of normal force

If boundary edge ei of IP are discretized into sn segments

with index sk ¼ 1; 2; . . .; sn, the integral of normal contact

force on edge ei can be computed by

f nei ¼ nei

Z

lei

uCP � uTPð Þdlei ¼ nei
Xsn

sk¼1

Z

lsk

uCP � uTPð Þdlsk

ð15Þ

Assume points pa and pb are the two ending points of

segment sk. As the potential is linearly distributed along

segment sk, the integral of potential force on sk can be

computed by

f nsk ¼
Z

lsk

uCP � uTPð Þdlsk ¼
Lsk
2

fa þ fbð Þ; ð16Þ

where fa ¼ uCP pað Þ � uTP pað Þ; fb ¼ uCP pbð Þ � uTP pbð Þ;
Lsk is the length of segment sk. Meanwhile, the coordinate

vector pk ¼ xk; ykð Þ of the loading point pk on segment sk

can be obtained by

pk ¼ pa þ
fa þ 2fb
3 fa þ fbð Þ pb � pað Þ; ð17Þ

where pa and pb are the coordinate vector of point pa and

pb, respectively.

The distributed normal contact force can be equivalently

represented by a total normal contact force f ngCP,

f ngCP ¼
Xen

ei¼1

f nei ¼
Xen

ei¼1

Xsn

sk¼1

f nsk; ð18Þ

where ei indexing the contact force f nei of edge ei and en is

the total number of IP boundary edges; sk indexing the

contact force f nsk of segment sk and sn is the total number of

Fig. 6 An example to show the demarcation point and integral

segment for numerical computation of contact force along an IP edge
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segments on edge ei. The unit contact normal vector ng of

f
ng
CP can be obtained by

ng ¼ f ngCP
kf ngCPk

ð19Þ

If pm ¼ xm; ymð Þ is a point on the acting line lng along

which the moment of total normal contact force is zero, it

satisfies the moment balance equation along axes oz,

Xsnn

sk¼1

f nxsk ym � ykð Þ þ
Xsnn

sk¼1

f nysk xk � xmð Þ ¼ 0 ð20Þ

where f nxk , f nyk represent components along ox and oy

direction of the normal force on segment sk; snn is the total

segment number of the IP boundary. xk; ykð Þ is the coor-

dinate of contact force f nsk.

The loading point pg ¼ xg; yg
� �

of the global normal

contact force is obtained as follows: (1) an auxiliary line ltg

that passes the IP centroid and perpendicular to acting line

lng is created; (2) the intersection point of the auxiliary line

ltg and the acting line lng is chosen as the contact point of

global normal contact force and global tangential contact

force. The normal contact force works along lng, while the

tangential contact force works along line ltg.

Recall the formulation of equation of motion using the

potential energy format, and based on the block frame at

the beginning of the step, the potential energy of the con-

tact force for CP can be represented by

Pn
CP ¼ uTCPf

ng
CP ¼ dTCPTCP xg; yg

� �T
f
ng
CP ð21Þ

For CP, the contribution of the contact force to the force

terms Fn
i in Eq. (6) is

Fng
CP ¼ oPn

odCP
¼ TCP xg; yg

� �T
f ngCP ! Fn

CP ð22Þ

Similarly, for TP, the contribution of contact force f
ng
TP to

Fn
i is

Fng
TP ¼ oPn

TP

odTP
¼ TTP xg; yg

� �T
f ngTP ! Fn

TP ð23Þ

3.2.5 Formulation of tangential force

The global tangential contact force is represented in a

global format, and Coulomb friction law is used to dif-

ferentiate the stick and sliding states of two contacting

polygon. For a block pair CP and TP, the accumulated

relative displacement d will be recorded. Stick status is

assumed if they come into contact initially in a step and d

at that instant is set to zero.

The normal and tangential components of d are named

dnor and dtan, and the relative sliding direction is s. At

instant tn, for a contact pair with stick status in previous

step (from tn�1 to tn), d
n
nor, d

n
tan, and sn are determined by

dnnor ¼ dnngnð Þngn ð24aÞ

dntan ¼ dn � dnnor ð24bÞ

sn ¼ dntan
kdntank

ð24cÞ

The tangential contact force f tgCP for CP is obtained by

f tgCP ¼
�ktd

n
tan when kktandntank\kf ngCPk tan/

�kf ngCPk tan/sn when kktandntank�kf ngCPk tan/

	

ð25Þ

where / represents the frictional angle; ktan is the tangen-

tial penalty value.

At instant tn, for a contact pair with sliding status in

previous step (from tn�1 to tn), Eq. (24) is still applied for

computation of dnnor, d
n
tan, and sn. Assume the frictional

force for CP at tn�1 is f
tg
n�1, the tangential contact force f

tg
CP

for CP at tn is obtained by

f tgCP ¼
�kf ngCPk tan/sn when f tgn�1 � dntan\0

�ktand
n
tan when f tgn�1 � dntan � 0

	
ð26Þ

Based on the frame at tn, the potential energy con-

tributed by tangential contact force for CP is

Pt
CP ¼ uTCPf

tg
CP ¼ dTCPTCP xg; yg

� �T
f
tg
CP ð27Þ

For CP, The contribution of tangent contact force f tgCP to

the global force Fn
i is

Ftg
CP ¼ oPt

odCP
¼ TCP xg; yg

� �T
f tgCP ! Fn

CP ð28Þ

For TP, the tangential force f tgTP ¼ �f tgCP. Similarly, the

contribution of tangential contact force f tgTP to global force

Fn
i is

Fng
TP ¼ oPt

TP

odTP
¼ TTP xg; yg

� �T
f tgTP ! Fn

TP ð29Þ

If the contact status at instant t is sliding, dt will also be

set to zero.

3.2.6 Contact information update

For process from tn to tnþ1, once the incremental dis-

placement di for each block is obtained, the incremental

displacement DugCP and Du
g
TP for contact point pg in CP and

TP can be computed, and the incremental relative dis-

placement Ddn ¼ DugCP � DugTP. The accumulation of rel-

ative movement can also be updated. For stick contact pairs

at tn, the accumulated relative displacement at tnþ1

dnþ1 ¼ dn þ Ddn; for sliding contact pairs at tn, the accu-

mulated relative displacement at tnþ1 dnþ1 ¼ Ddn.
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3.3 Polygon-boundary contact

Contact of polygon and model boundary needs to be con-

sidered in some simulations. Two kinds of boundary con-

ditions are used in current models. The first kind of

boundary is the usage of virtual polygons. These virtual

polygons are involved in contact detection, while their

displacement and deformation are not updated. The second

kind is boundary lines and segments. Similarly, these lines

and segments are regarded as parts of some virtual polygon

boundaries and contact of polygon and lines are treated as

contacts of polygons.

4 Verification of collision and frictional
problems

In this section, the accuracy of the proposed contact solu-

tion approach for collision and frictional sliding problems

is verified.

4.1 Collision of two identical polygons

In this example, collision process of two identical quadri-

lateral blocks was simulated using the proposed approach.

Two square blocks with an edge length of 1 m are estab-

lished, and their centroid is in a same line along ox axes, as

shown in Fig. 7. The block on the left side is named block

A, while the block on the right side is named block B.

Centroid of block A has an initial velocity of 1 m/s along

ox direction, while block B is static. The parameters for

block physics and contact are shown in Table 4. The

velocity of block centroid along ox direction is tracked, and

the velocity change with time is shown in Fig. 8. It can be

seen that the two blocks exchange their kinetic energy

during the collision process and the results satisfy the

conservation of momentum.

4.2 Collision of a polygon and a symmetric
polygonal system

In this example, the collision process of a block and a

symmetric block system was investigated with the pro-

posed approach. Figure 9 shows details of the model

geometry. The model geometry is symmetric regarding the

oy axes passing the centroid of the top block. It can be

predicted the block system will move in a symmetric way

during the collision process. The parameters used in sim-

ulation are shown in Table 4. The model geometry and

block velocity during the collision process are shown in

Fig. 10. The movements of all block centroids were

tracked during the simulation, and their traces are shown in

Fig. 10. The symmetric response of the block system ver-

ifies the correctness of the proposed contact solution

approach.

4.3 Sliding block on an inclined plane

In this example, the accuracy of the proposed algorithm for

computation of block sliding displacement on an inclined

plane is investigated. The model is shown in Fig. 11. Block

B can slide along the inclined plane of block A if the

friction angle / is smaller than the inclined angle h. If the
initial velocity of B is zero, its sliding displacement l along

the inclined plane can be computed analytically by

l ¼ 1

2
g sinh� cosh � tan/ð Þ � t2 ð30Þ

This example is computed by the proposed approach

with the parameters shown in Table 4. The values of

friction angle / ¼ 0�; 10�; 20� are used to test the accuracy

of the numerical approach. The time–displacement curves

under various friction angle are shown in Fig. 12. Good

agreements are obtained for numerical results and analyt-

ical results.

5 Robustness test examples

In this section, the robustness of the proposed contact

solution approach in kinetic analysis of block system with

various polyhedral shapes is tested and analyzed by several

benchmarking examples. The physical parameters in sim-

ulation examples in Sect. 5 are shown in Table 5.

5.1 Collision of polygons with different sizes

In this example, the bouncing block model with various

block sizes was tested to show the necessity of using uni-

fied H value in potential definition (12). Two cases are

designed with different fixed block sizes, as shown in
Fig. 7 Initial configuration of the collision squares with identical

geometries
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Fig. 13. In this model, block A will fall freely and bouncing

back after colliding block B. In case 1, the height of B is

0.1 m while its height 1 m in case 2. Two kinds of H

values are used in the model. The approach using inscribed

circle radius as H value is named previous approach, while

current approach uses a unified H value as the average of

largest and smallest edge length. The physical parameters

used in the simulation are shown in Table 5. The accu-

mulated displacement of A’s centroid along oy direction is

tracked, and the time–displacement curves of previous and

current approaches for case 1 and case 2 are shown in

Fig. 14. When blocks of different sizes are used as model

boundaries, the block interaction process should not be

influenced by their sizes. The results in Fig. 14 show the

current approach using a unified H value lead to very

similar block bouncing response. By contrast, the previous

approach uses inscribed circle radius as H values lead to

Fig. 10 Response of the symmetric polygonal system after 1.0 s

simulation

Fig. 11 Initial configuration of the sliding block model

Fig. 12 The time–displacement curve of frictional sliding block

model

Table 4 Parameters of simulation examples in Sect. 4

Example density (kg/m3) E (GPa) l kn (MPa) kt (1 9 106 N/m) Time step (s)

4.1 2000 1 0.25 10 – 0.0001

4.2 2000 0.1 0.25 10 – 0.001

4.3 2000 1 0.25 10 10 0.00001

Fig. 8 Velocity changes of two blocks along ox direction during the

simulated collision process

Fig. 9 Initial geometry of the symmetric polygonal system
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significantly different block bouncing response for these

two testing cases.

5.2 Polygon with small angles

In this example, collision of polygons with small angles

was tested. Two identical triangles with a small angle of 5�

are generated, as shown in Fig. 15. The two triangles move

upwards and downwards, respectively, with an initial

velocity of 1 m/s. The collision process is modeled by the

proposed approach with the parameters shown in Table 5.

The two angle end points and polygon centroid are tracked

to show the collision process, and the final configuration

after 0.2 s is shown in Fig. 16. The result shows the two

triangles move symmetrically regarding the collision cen-

troid, verifying both the accuracy and robustness of the

proposed approach in treating small angles.

Fig. 13 The two bouncing block cases with different fixed block sizes

Fig. 14 Accumulated vertical displacement history of block A using

previous and current H values for the two cases

Fig. 15 Initial configuration of the collision triangles with small

angles

Fig. 16 Results of collision triangles with small edges after 0.2 s

Table 5 Parameters of simulation examples in Sect. 5

Example q (kg/m3) E (GPa) l kn (MPa) kt (1 9 106 N/m) Time step (s)

5.1 2000 1 0.25 50 10 0.0001

5.2 2000 1 0.25 50 10 0.00002

5.3 2000 1 0.25 50 10 0.0001
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5.3 Polygon with small edges

In this example, collision of polygons with small edges was

tested. Two polygons are generated and the bottom block

has a small edge of 0.01 m compared to the typical block

size scale around 1 m. For this case, when block penetra-

tions around 0.01 m is allowed in the computation, part of

the intersection polygon may locate to the inner parts

without potential function definition when previous

approach [56] is applied. This will cause the routine errors

or inaccuracy of the computation. By contrast, these

robustness issues are eliminated using the proposed

approach with new potential function definition.

In this example, two model configurations are consid-

ered, as shown in Fig. 17. For the configuration in Fig. 17a,

the vertex from the upper block will touch the small edge.

For the configuration in Fig. 17b, the vertex of the upper

block will touch the right edges neighboring the small

edge. The physical parameters in simulations are shown in

Table 5. The configurations after 0.2 s are shown in

Fig. 18a, b for the two cases in Fig. 17a, b. The tracing of

contacting vertex is also shown in Fig. 18. The results

show the proposed approach can treat contacts of small

edges with good robustness.

6 Application examples

The stability of rock structures on the earth surfaces is

controlled by the geometrical and physical properties of the

discontinuities. Numerical tools are commonly used for

analysis of the stability of rock structures or evaluation of

the failure process of rock masses. In this section, two

models are specially designed and analyzed using the

proposed approach to show the potential of the proposed

approach in application of rock mechanics problems.

6.1 Frictional collapse of a rock mass system

One common application scenario of the numerical tools is

the evaluation of collapse process of rock masses, such as

the runout of rock avalanche and the impact of landslide to

downstream structures or rivers. In this example, the pro-

posed approach is used to investigate the influence of

frictional properties on the collapse process of a rock block

system. A jointed rock mass model is established as shown

in Fig. 19. The region has dimensions of 20 m� 50 m.

Two sets of persistent joints cut this region into a rock

block system. Dips and spacing of the two joints sets are

80� and 40�, 1:5 m and 2:5 m. It can be predicted that this

block system will collapse with combination of joint

geometry and low joint friction angle. The friction angle

between rock blocks and boundary blocks is set to 35�.
Two values are used for the friction angle between rock

blocks: case 1: 15�; case 2: 30�. Other physical parameters

are as follows: block density 2700 kg/m3; elastic modulus

2 GPa; Poisson’s ratio 0:3; normal contact penalty 2 GPa;

tangential contact penalty 1� 109 N/m; time step size

0:0001 s; and total simulation time 7:5 s. Comparison of

the simulation results at 2:5 s, 5:0 s, and 7:5 s using dif-

ferent joint friction angles (case 1 of 15� and case 2 of 30�)
is shown in Fig. 20. A faster collapsing process and a

larger runout mass were observed with lower friction angle.

This example shows the proposed approach has potential in

Fig. 17 Two contact scenarios for collisions of polygons with small edges: a contact of vertex and small edge in case 1; b contact of vertex and

neighboring edge of the small edge in case 2
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simulation of runout and movement for block systems with

complex polygon shapes.

6.2 Rock toppling and rock slumping

Another common application of numerical tools is to pre-

dict the potential kinetic failure pattern of rock slopes with

certain physical parameters and geometrical patterns. In

this example, the previous example [36] that involves both

toppling and slumping simultaneously is used to show the

accuracy of proposed approach in predicting the slope

failure patterns. The model is shown in Fig. 21. The rock

slopes in a valley region are cut by a joint set with dip

angle of 75� and spacing of 3 m, and there is a sliding base

with an inclined angle of 30�. The friction angle between

the sliding base and the slope block is set to 32�, indicating
that both the left slope and right slope will keep stable as

one unique block. However, influenced by the joint set with

a friction angle of 22�, the stable condition of both the left

part and the right part will be broken. The left part will fail

in slumping pattern, while the right part will fail with

toppling pattern. Successful capture of simultaneous top-

pling and slumping behavior can verify the feasibility of

the approach in modeling complex landslide behaviors.

The above two-dimensional model and the extended three-

dimensional models have been used in verifications of

discrete element approach [10] and discontinuous defor-

mation analysis approach [63, 65]. In this paper, the model

is simulated with the proposed approach using the fol-

lowing parameters: block density 2700 kg/m3; elastic

modulus 2 GPa; Poisson’s ratio 0:3; normal contact penalty

0:5 GPa; tangential contact penalty 1� 108 N/m; time step

size 0:0001 s; total simulation time 3:5 s. The result after

3.5 s simulation is shown in Fig. 22. The proposed

approach correctly predicted the slumping and toppling

failure pattern. This shows the potential of the proposed

approach in analysis of the stability analysis of rock block

systems.

7 Conclusion

In this paper, the penalty function method with a shortest-

path-based distance potential definition is proposed for

contact force computation of two arbitrarily shaped convex

polygons. This novel approach extended the definition of

potential function for convex polygons and exhibit good

Fig. 18 Results of block collision after 0.2 s simulation: a result of case 1; b result of case 2

Fig. 19 The rock mass model cut by two sets of joints
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robustness in treating irregular convex polygonal shapes.

Currently, the proposed contact force computation

approach is implemented in DDA framework with explicit

representation of contact force. The contribution of this

paper to discontinuous deformation analysis of convex

polygon system is summarized as follows:

(1) The boundary of entrance block is used to judge

convex polygon overlap and detailed algorithm is

given. A simple block cutting algorithm is also

proposed to construct the intersection polygon when

overlap occurs. These algorithms facilitate accurate

and robust geometry analysis in contact of convex

polygons.

(2) The novel potential function definition for polygon

lays a foundation for robust contact solution of

irregular polygons. Specially for convex polygons, a

simple algorithm is given for the computation of

contact potential of any points in it. An integral

Fig. 20 Simulation results of the collapse process of rock mass system: a case 1 after 2.5 s; b case 2 after 2.5; c case 1 after 5.0 s; d case 2 after

5.0 s; e case 1 after 7.5 s; f case 2 after 7.5 s
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approach is proposed for computation of contact

force based on the subdivision of edges of intersec-

tion polygon.

(3) Formulations of normal and tangential contact force

in an explicit DDA framework are given, and the

accuracy of the proposed approach for collision and

frictional problems is verified.

The accuracy and robustness of the proposed approach

are verified by the benchmarking examples. Moreover, its

potential in kinetic analysis of complex polygonal block

systems is shown by the two application examples. These

advantages will promote the application of the proposed

approach in any discontinuous methods that solve the

interaction of discrete bodies with explicit representation of

contact force.
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