5,245 research outputs found

    Transplantation of Adipose Derived Stromal Cells into the Developing Mouse Eye

    Get PDF
    Adipose derived stromal cells (ADSCs) were transplanted into a developing mouse eye to investigate the influence of a developing host micro environment on integration and differentiation. Green fluorescent protein-expressing ADSCs were transplanted by intraocular injections. The age of the mouse was in the range of 1 to 10 days postnatal (PN). Survival dates ranged from 7 to 28 post transplantation (DPT), at which time immunohistochemistry was performed. The transplanted ADSCs displayed some morphological differentiations in the host eye. Some cells expressed microtubule associated protein 2 (marker for mature neuron), or glial fibrillary acid protein (marker for glial cell). In addition, some cells integrated into the ganglion cell layer. The integration and differentiation of the transplanted ADSCs in the 5 and 10 PN 7 DPT were better than in the host eye the other age ranges. This study was aimed at demonstrating how the age of host micro environment would influence the differentiation and integration of the transplanted ADSCs. However, it was found that the integration and differentiation into the developing retina were very limited when compared with other stem cells, such as murine brain progenitor cell

    Robust Upward Dispersion of the Neutron Spin Resonance in the Heavy Fermion Superconductor Ce1x_{1-x}Ybx_{x}CoIn5_5

    Get PDF
    The neutron spin resonance is a collective magnetic excitation that appears in copper oxide, iron pnictide, and heavy fermion unconventional superconductors. Although the resonance is commonly associated with a spin-exciton due to the dd(s±s^{\pm})-wave symmetry of the superconducting order parameter, it has also been proposed to be a magnon-like excitation appearing in the superconducting state. Here we use inelastic neutron scattering to demonstrate that the resonance in the heavy fermion superconductor Ce1x_{1-x}Ybx_{x}CoIn5_5 with x=0,0.05,0.3x=0,0.05,0.3 has a ring-like upward dispersion that is robust against Yb-doping. By comparing our experimental data with random phase approximation calculation using the electronic structure and the momentum dependence of the dx2y2d_{x^2-y^2}-wave superconducting gap determined from scanning tunneling microscopy for CeCoIn5_5, we conclude the robust upward dispersing resonance mode in Ce1x_{1-x}Ybx_{x}CoIn5_5 is inconsistent with the downward dispersion predicted within the spin-exciton scenario.Comment: Supplementary Information available upon reques

    Out-of-Plane Strengthening of Unreinforced Masonry Walls by Glass Fiber-Reinforced Polyurea

    Get PDF
    Fiber-reinforced polymer reinforcement or polyurea reinforcement techniques are applied to strengthen unreinforced masonry walls (UMWs). The purpose of this experimental study is to verify the out-of-plane reinforcing effect of sprayed glass fiber-reinforced polyurea (GFRPU), which is a composite elastomer made of polyurea and milled glass fibers on UMW. The out-of-plane strengths and ductile behaviors based on various coating shapes are compared in this study. An empirical formula to describe the degree of reinforcement on the out-of-plane strength of the UMW is derived based on the experimental results. It is observed that the peak load-carrying capacity, ductility, and energy absorption capacity gradually improve with an increase in the strengthening degree or area. Compared with the existing masonry wall reinforcement method, the GFRPU technique is a construction method that can help improve the safety performance along with ease of construction and economic efficiency. Doi: 10.28991/CEJ-2022-08-01-011 Full Text: PD

    In-Plane Strengthening of Unreinforced Masonry Walls by Glass Fiber-Reinforced Polyurea

    Get PDF
    Strengthening techniques have been employed in Korea to unreinforced masonry walls (UMWs) for several years to protect them from damage caused by the intermittent occurrence of earthquakes. Polyurea, which has a high tensile strength and elongation rate, can be utilized as a strengthening material to enhance the in-plane strength and ductility of UMWs. Glass fiber-reinforced polyurea (GFRPU) is a composite elastomer manufactured by progressively adding milled glass fiber to polyurea. The purpose of this study is to investigate the enhancement of the in-plane strength and ductility of UMWs using GFRPU, depending on the shape of the GFRPU coating on the wall. Four masonry wall specimens are tested with test variables of the number of strengthening sides and coating shapes. It is illustrated that the GFRPU reinforcement of masonry wall leads to enhanced load-carrying capacity, ductility, and energy absorption. An empirical formula to represent the degree of strengthening effected by GFRPU is proposed in this study. Doi: 10.28991/cej-2021-03091782 Full Text: PD

    Cell-free synthesis of functional phospholipase A1 from Serratia sp.

    Get PDF
    Additional file 1: Figure S1 Gas chromatography analysis of sesame oil incubated with cell-free synthesized PLA1

    High Fidelity Tape Transfer Printing Based On Chemically Induced Adhesive Strength Modulation

    Get PDF
    Transfer printing, a two-step process (i.e. picking up and printing) for heterogeneous integration, has been widely exploited for the fabrication of functional electronics system. To ensure a reliable process, strong adhesion for picking up and weak or no adhesion for printing are required. However, it is challenging to meet the requirements of switchable stamp adhesion. Here we introduce a simple, high fidelity process, namely tape transfer printing(TTP), enabled by chemically induced dramatic modulation in tape adhesive strength. We describe the working mechanism of the adhesion modulation that governs this process and demonstrate the method by high fidelity tape transfer printing several types of materials and devices, including Si pellets arrays, photodetector arrays, and electromyography (EMG) sensors, from their preparation substrates to various alien substrates. High fidelity tape transfer printing of components onto curvilinear surfaces is also illustrated
    corecore