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Abstract 

Strengthening techniques have been employed in Korea to unreinforced masonry walls (UMWs) for several years to 

protect them from damage caused by the intermittent occurrence of earthquakes. Polyurea, which has a high tensile 

strength and elongation rate, can be utilized as a strengthening material to enhance the in-plane strength and ductility of 

UMWs. Glass fiber-reinforced polyurea (GFRPU) is a composite elastomer manufactured by progressively adding milled 

glass fiber to polyurea. The purpose of this study is to investigate the enhancement of the in-plane strength and ductility 

of UMWs using GFRPU, depending on the shape of the GFRPU coating on the wall. Four masonry wall specimens are 

tested with test variables of the number of strengthening sides and coating shapes. It is illustrated that the GFRPU 

reinforcement of masonry wall leads to enhanced load-carrying capacity, ductility, and energy absorption. An empirical 

formula to represent the degree of strengthening effected by GFRPU is proposed in this study. 

Keywords: Glass Fiber-Reinforced Poloyurea; In-Plane Load-Carrying Capacity; Retrofit; Energy Absorption Capacity; Unreinforced 

Masonry Wall. 

 

1. Introduction 

Seismic design codes in Korea were first established only in 1988 despite the history of intermittent occurrence of 

earthquakes. The structures constructed before the codes were established were vulnerable to earthquakes. After the 

consecutive earthquakes at Kyungju (2016) and Pohang (2017) in South Korea, the necessity of seismic retrofitting in 

terms of technical and social aspects was raised. One of the noticeable damages reported in the structures was the 

secondary damage caused by chunks of brick falling on Unreinforced Masonry Walls (UMWs). Secondary damage 

also included harm to vehicles and adjacent structures.  

Several retrofitting techniques have been developed and implemented to enhance the structural and seismic 

performance of UMWs. Reinforcement should be carried out to enhance the in-plane load-carrying capacity, ductility, 

and energy absorption. Several strengthening techniques such as the attachment of shotcrete and ferrocement materials 

to the UMW, grout injection and re-pointing, external steel reinforcement, and fiber-reinforced polymer (FRP) mesh 

reinforcement have been developed. Wang et al. [1] summarized the strengthening/retrofitting methods based on the 

fundamental concepts of these methods. Furtado et al. [2] provided a systematic review to investigate the retrofitting 
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and strengthening strategies of masonry walls. One of the retrofitting methods used to enhance the structural and 

seismic performance of UMWs is external steel reinforcement using wall ties and steel anchors. The steel jacketing 

technique of attaching steel members to the UMW can enhance the in-plane lateral strength, ductility, and energy 

absorption [3]. Darbhanzi et al. [4] investigated the seismic retrofitting of UMWs using two vertical steel ties on either 

edge of the walls and noticed a significant increase in seismic capacity. The steel jacketing method changes the 

exterior esthetics, increases the economic burden, breaks the masonry wall, and is prone to tie corrosion. 

It has been reported that FRP reinforcement methods for UMWs can improve the strength and ductility of structural 

members. The FRP mesh is the most widely utilized reinforcement method for improving the in-plane lateral strength 

of UMWs. Ismail and Ingham [5] considered UMWs reinforced by polymer fiber-reinforced mortar. In particular, they 

studied the effectiveness of the method of inhibiting the diagonal failure modes. Various variables such as failure 

mode, stress–strain behavior, shear strength, maximum drift (shear strain), ductility, and number of layers were used, 

and the shear strength was improved by 114-148% for one-sided reinforcement and 446–481% for two-sided 

reinforcement. In 2016 [6], in-plane and out-of-plane experiments were performed on the same polymer fiber-

reinforced mortar. Most walls demonstrated ductile behavior until they failed, with a 128–136% reinforcement effect.  

Papanicolaou et al. [7] conducted an experiment on the effect of the load transfer performance and deformation 

performance of UMWs under cyclic loads using an external junction grid. The experiment was conducted in two 

groups: using clay bricks and stone blocks, and 1) in-plane bending with axial force, 2) out-of-plane bending with 

axial force, and 3) in-plane shear tests were performed. Altin et al. [8] conducted an in-plane repeated load experiment 

on reinforced concrete frames using carbon-fiber-reinforced polymer (CFRP) strips. The experiment used the width 

and degree of reinforcement of the CFRP strip as variables. It was reported that as the reinforcement degree of the 

CFRP strips increased, the lateral resistance and stiffness of the walls increased. El-Diversity et al. [9] conducted an 

experiment to verify the reinforcement effect of masonry walls reinforced by ferrocement and glass fiber-reinforced 

polymer (GFRP) complex systems on the in-plane recurrent load. It was noticed that the reinforcement technique 

increased the ductility and energy absorption capacity by 33% to 85% and the lateral resistance performance by 25% 

to 32%. Lucchini et al. [10] studied the reinforcement type using steel fiber-reinforced mortar (SFRM) to complete the 

structural walls. SFRM indicated excellent tensile properties after cracking, so it was bonded to improve the shear 

resistance of the masonry. Benedetti [11] proposed the strengthening technique to be composed of a glass fiber mesh 

and fiber reinforced mortar. Haach et al. [12] investigated various parameters to affect the lateral strength of masonry 

wall. Zhou et al. [13] studied the reinforcement technique of polypropylene bands. Houria et al. [14] and El Malyh et 

al. [15] presented CFRP reinforcement technique for reinforcing masonry structures. 

Polyurea is an elastomer with high deformability, energy absorption capacity, hardness, fracture, and tensile 

strength. Wu et al. [16] investigated the reinforcing effect based on the polyurea coating thickness and a method for 

strengthening the UMW against blast loads. The reinforcement technique of UMWs using polyurea reinforced with 

GFRP was verified experimentally [17]. Further, discrete fiber-reinforced polyurea (DFRP) was introduced for 

multihazard and/or repair–retrofit applications [18-20]. Glass fiber-reinforced polyurea (GFRPU) used to mix polyurea 

and milled glass fiber can achieve higher tensile strength while maintaining the other properties of polyurea. The 

reinforcement effect on concrete beams and columns reinforced by GFRPU [21-23] and the in-plane reinforcement 

effect of masonry-filled walls [24] were investigated experimentally. In these studies, it was found that the in-plane 

strength and ductility were significantly enhanced by GFRPU.  

In the previous studies, the reinforcing effect of GFRPU to enhance the strength and ductility of reinforced concrete 

beams and columns was verified. As an extension of these works, this experimental study was conducted to verify the 

reinforcement effect of masonry walls, which are vulnerable to earthquakes or lateral forces. This study evaluates the 

degree of improvement in the in-plane load-carrying capacity, ductility, and energy absorption of the UMW caused by 

GFRPU depending on the shape of the GFRPU coating [21-24]. A 5-mm-thick layer of the composite elastomer 

GFRPU containing 5% milled glass fiber by weight ratio was sprayed on all specimens. In the experiment, the strength 

and degree of energy absorption enhancement of the strengthened specimens were compared with the corresponding 

features of an unreinforced wall. By modifying the Triantafillou and ACI models, this study proposes empirical 

formulas to describe the improvement in strength caused by GFRPU reinforcement. This experimental study 

demonstrates that the GFRPU spraying approach has the merit of saving the cost, reducing the construction period, 

and performing more appropriate reinforcement as compared with other techniques. A flowchart of this study is shown 

in Figure 1. 
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Figure 1. Flowchart of this study 

2. Martials and Methods 

2.1. Material Properties 

GFRPU is a composite elastomer that mixes polyurea with milled glass fibers of length 300 μm. It was reported [24] 

that the optimum weight ratio of milled glass fiber required to reserve the maximum tensile strength of GFRPU was 

5%, and the tensile strength decreased when the weight ratio was higher than 5%. In this experiment GFRPU with 5% 

weight ratio was used. The milled glass fiber was selected for ease of spraying through a nozzle as compared with 

chopped glass fiber. Both polyurea and glass fiber were mixed at speeds higher than 500 rpm in a vessel and sprayed 

at high pressure. The tensile strength of GFRPU was measured based on the Korean Standard KS F 4922, “Polyurea 

resin waterproofing membrane coating.” Thirty specimens were prepared to minimize the deviation in strength caused 

by nonuniform spraying thickness and dispersion of the glass fiber, and these were tested. The mechanical properties 

of GFRPU were compared with those of polyurea, as summarized in Table 1. It was noticed that the tensile strength 

and elastic modulus of GFRPU were enhanced to 36.6% and 44.0%, respectively, owing to the mixture of milled glass 

fibers, but the elongation rate was slightly decreased to 13.4% with an increase in the amount of glass fiber. GFRPU 

has sufficient ductility and toughness to obviate abrupt brittle failure despite the decrease in the elongation rate. 

The average compressive strength of concrete poured into the concrete frame to enclose the masonry wall depicted 

in Figure 2 was 26.2 MPa. The average compressive strengths of the concrete bricks utilized in the masonry wall the   

mortar utilized in the laying bricks were measured as 13.1 and 10.4 MPa, respectively. These values were obtained fro

m experiments in accordance with the Korean Standards. 

Table 1. Comparison of mechanical properties of polyurea and GFRPU 

Property Polyurea GFRPU Rate of increase (%) 

Tensile strength (MPa) 22.7 31 36.6 

Elastic modulus (MPa) 99.9 143.9 44.0 

Elongation rate (%) 418 362 13.4 

 

Figure 2. Details of masonry wall and reinforced concrete frame (unit: mm) 
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2.2. Specimens 

The masonry wall specimens were fabricated with a shape ratio of 0.7: length of 2000 mm and height of 1400 mm. 

The masonry wall was installed in a reinforced concrete frame. The masonry filling wall was built using the 1B 

stacking method. The upper beam was reinforced by longitudinal bars of 8-D18 and shear reinforcement bars of 

D10@130. The cross section of the column measured 190 mm × 190 mm, which is the same cross section as the 

thickness of the 1B stacking of the masonry wall, and is reinforced by longitudinal bars of 4-D13 and lateral 

reinforcement bars of D10@95. The lower foundation was reinforced by longitudinal bars of 8-D25 and shear 

reinforcement bars of D16@200. Reinforcing bars of D10, D13, and D18 and D25 with yield strengths of 400 and 500 

MPa, respectively, were utilized. The details of the steel reinforcement bars are presented in Figure 2. The concrete in 

the frame was cast simultaneously, and the experiment was conducted after 28 curing days. 

The four masonry wall specimens consisted of an unreinforced specimen and three reinforced specimens. The test 

variables included the number of strengthening sides using one-sided and two-sided reinforcement and coating shapes. 

The unreinforced specimen was indicated as “NONE,” Arabic numbers 1 and 2 indicated the number of sprayed sides, 

and “All” and “X” represent the entire and crossing-type coatings, respectively. All the specimens except the 

unreinforced specimen were bonded and fixed to the concrete frame by 100-mm extended GFRPU spraying from the 

edges of the masonry wall. GFRPU contained 5% milled glass fiber by weight ratio and a 5-mm-thick layer of it was 

sprayed on all specimens.  

 

 

 

Figure 3. Specimen and loading test apparatus: a) loading system; b) installed sensors; c) photo of specimen and loading system 

(a) 

(b) 

(c) 
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Figure 4. Loading by displacement control 

The lower beam of the concrete frame surrounding the masonry wall was fixed to the laboratory floor. The lateral 

loading in the direction parallel to the upper beam was controlled by displacement without loading in the direction of 

gravity. The in-plane masonry wall specimen and loading system of the actuator with a capacity of 2000 kN are 

depicted in Figure 3. The loading was alternatively conducted in the positive and negative directions for identical 

displacements as they were gradually increased from the initial deformation of 0.4 mm, as depicted in Figure 4. The 

displacements in the horizontal direction of the specimens were measured using three linear variable displacement 

transducers (LVDTs), and two additional LVDTs measured the displacements in the diagonal direction. 

3. Failure Modes 

Initial cracks originated from the diagonal cracks at the wall corners. They gradually developed in the middle of the 

wall with an increase in the lateral load, and the crack width increased. More explicit diagonal cracks were seen in the 

unreinforced specimen as compared with the GFRPU specimens (Figures 5 and 6) because the specimens strengthened 

by GFRPU controlled the crack development caused by the tensile capacity of GFRPU. The initial cracks in all the 

specimens appeared in the displacement range of 0.2–0.8 mm, as presented in Table 2. 

Table 2. Load and displacement at major stages 

Specimens 

Initial crack Positive direction Negative direction 

Load (kN) 
Displacement 

(mm) 

First peak 

load/Second peak 

load (kN) 

Displacement at 

first/second peak 

load (mm) 

First peak 

load/Second peak 

load (kN) 

Displacement at 

first/second peak 

load (mm) 

NONE -70 -0.2 159.7/174.57 3.41/14.58 158.3/179.11 3.44/15.78 

1-ALL 117 +0.8 207.94/200.4 2.76/10.87 174.25/149.4 3.03/10.3 

2_ALL +122 +0.8 227.15/200.3 7.11/12.82 210.19/202.7 4.91/7.17 

1-X -111 -0.8 198.9/199.65 3.79/10.99 181.8/223.64 5.02/21.99 
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                                                                    (c)                                                                                                   (d) 

Figure 5. Photos of failed specimens after experiments: (a) NONE, (b) 1-All, (c) 2-All, (d) 1-X 

FEMA 273 [25] and FEMA 306 [26] reported that a masonry wall subjected to an in-plane load fails by rocking, 

toe crushing, sliding, and diagonal tension. Diagonal tension and mortar cracks were evident in all the specimens. 

Mortar cracks at the bed joints were found in all the specimens owing to the low bond strength between the bricks. 

The unreinforced NONE specimen indicates tension cracks as well as mortar cracks along the diagonal direction. The 

crack patterns exhibited a failure mode similar to that of pure shear.  

The crack development of the other reinforced specimens was delayed by GFRPU strengthening owing to the 

limited development of diagonal tension cracks. The shear and bond-resisting capacity of the mortar between the 

bricks were also enhanced by the GFRPU reinforcement. This indicates that the GFRPU reinforcement enhances the 

bond strength between the mortar and the bricks and the mechanical capacity of the specimens. The reinforced 

specimens failed, as indicated by mortar cracks in the longitudinal directions except at the wall corners. It was 

estimated that the cracks were caused by mortar sliding between the bricks owing to the low bond strength. The 

strengthening effect was established as the cracks of the GFRPU-reinforced specimen occurred at a point higher than 

the peak load of the unreinforced specimen. Despite the higher lateral load, the peel of GFRPU and the dropping of 

bricks were rarely noticed. The failure modes indicated that GFRPU could control the crack patterns and failure modes 

based on the degree of reinforcement.  

4. Load-Displacement Curves 

The validity of the GFRPU reinforcement technique was investigated by comparing the load–displacement curves 

based on the experimental parameters. The lateral displacement was measured using LVDTs at the top of the concrete 

frame, as illustrated in Figure 3(b). The spraying was performed manually by technical experts. However, it was not 

possible to sustain uniform dispersion of the glass fiber and coating thickness of GFRPU during spraying. The locally 

vulnerable region could be embedded in the sprayed wall owing to the inaccurate operation. The inaccurate spraying 

affected the results of the experiment. 

The specimens resisted the lateral load owing to the masonry wall and concrete frame. The load–displacement 

hysteresis curves depicted in Figure 7, including the peak load-carrying capacity, ductility, and energy absorption of 

the specimens, exhibited slightly different shapes depending on the degree of strengthening. The maximum load-

carrying capacity and corresponding displacements are listed in Table 2. GFRPU strengthening leads to an enhanced 

peak load-carrying capacity. It is illustrated that the first peak load was enhanced with the increase in the constraint 

capacity caused by GFRPU and its range was based on the degree of control of the expansion in the out-of-plane 

direction of the wall. The first peak load is a meaningful value for maximizing the strengthening effect caused by 

GFRPU. The load-carrying capacity of the unreinforced specimen NONE deteriorated abruptly, and the lateral load-

resisting capacity at the post-peak load was sustained by the concrete frame. After the other reinforced specimens 

except the 2-All specimens reached the first peak load, abrupt deterioration of the lateral load-resisting capacity was 

noticed with damage to the masonry wall, such as diagonal cracks and mortar cracks. It is estimated that a part of the 

load-carrying capacity of the masonry wall disappeared at this time. Subsequently, the lateral load was supported by 

the concrete frame and gradually increased, and it reached the second peak load. The first peak load of 2-All specimen 

represents the peak load because the masonry wall and concrete frame behave monolithically as the masonry wall was 

constrained by two-sided reinforcement. The two-sided reinforcement technique is the most effective in strengthening 

the UMW in the in-plane direction because it constrains the lateral expansion. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 7. Load-displacement curves: (a) NONE, (b) 1-All, (c) 2-All, (d) 1-X 

After the second peak load was reached, the specimens exhibited ductile behavior owing to the mechanical 

properties of the GFRPU material. However, most of the load-resisting capacity was sustained by the concrete column 

as against the behavior at the post-peak load. In the plots, the improvement in ductility capacity caused by the GFRPU 

is explained by the difference between the load–displacement curves of the unreinforced and GFRPU-reinforced 

specimens. It was also noticed that the range of ductility capacity was based on the degree of strengthening. Under the 

lateral load in the negative direction, the load–displacement curves display a slightly different aspect from that in the 

positive direction. The 1-All specimens exhibited a lower ductility capacity in the negative direction as compared with 

the unreinforced specimens. The 1-X specimens exhibited a more ductile capacity as compared with the 2-All 

specimens. This observation is attributed to the displacements caused by sliding owing to the closure and opening of 

the cracks during loading in alternative directions after reaching the peak load in the positive direction. 

 

Figure 8. Comparison of load-displacement curves 
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5. Energy Absorption Capacity  

Figure 7 presents the curves plotted between the repeated lateral loads and the corresponding displacements. Figure 

7 presents the load–displacement curves that connect the peak loads in the positive and negative directions of each 

cycle. As depicted in Figures 7 and 8, the energy absorption capacity improved with an increase in the degree of 

reinforcement, which is caused by the high elongation rate, a mechanical property of the polyurea material. The 

energy absorption capacity for a displacement of 42 mm in the positive and negative directions is quantitatively 

compared in Table 3, through this analysis, as depicted in Figure 8. The absorption capacity improved with the 

GFRPU reinforcement. The increase rates in percentage with respect to that in the unreinforced specimen were 17%, 

43%, and 34% for the 1-All, 2-All, and 1-X specimens, respectively. It was noticed that the rate of increase in the 

absorption energy of the 1-All specimen was underestimated, similar to the peak load, because of the error in 

operation caused by the non-uniform spraying thickness. The GFRPU was dispersed and abruptly stuck in the 

prescribed area through a small nozzle hole owing to the high-pressure spraying. The area in which it was stuck was 

larger than the nozzle hole, which caused the 1-X specimen to be unexpectedly stuck in an area similar to the 1-All 

specimen. Thus, the load-resisting and energy absorption capacities of the 1-X specimens were similar to or greater 

than those of the 1-All specimens.  

Table 3. Comparison of mechanical properties of polyurea and GFRPU 

Specimen Energy absorption capacity (kN-m) Improved rate (%) 

NONE 30.0 - 

1-All 35.2 17 

2-All 42.9 43 

1-X 40.2 34 

6. Derivation of Formula to Describe the GFRPU Reinforcement  

By modifying the Triantafillou [7] and AC125 [25, 26] models, this study proposed formulas to describe the degree 

of strengthening caused by GFRPU. It is not practical to construct a two-sided reinforcement using GFRPU, and the 

X-type reinforcement is rarely differentiated from the one-sided reinforcement of the wall when considering the 

construction and the experimental results. Thus, one-sided spraying is a universal method in terms of strength, 

construction, and economy. The strengthening degree can be predicted based on the difference in load between the 

peak load-carrying capacities of the unreinforced and 1-All specimens.  

(1) Modification of Triantafillou model 

The in-plane load-carrying capacity P is determined by adding the shear strengths of the UMW and GFRPU 

reinforcement as follows: 

𝑃 = 𝐹𝑚 + 𝐹𝐺                         (1) 

where 𝐹𝑚 denotes the shear strength of the UMW and takes the minimum value of the shear strength calculated by the 

four failure modes of rocking, toe crushing, sliding, and diagonal tension failure specified in the Korean code [27]. 𝐹𝐺 

represents the shear strength carried by the GFRPU and is derived using the experimental results. It is expressed as 

𝐹𝐺 =∝ 𝛾𝜆𝜌ℎ𝐸𝐺𝜖𝑚𝑎𝑥,𝐺𝑡𝐿                                     (2) 

where ∝: denotes the shear reinforcement factor (= 0.0093 for GFRPU with a weight ratio of 5%); 𝛾: = 1 in the case of 

one-sided reinforcement and 1.5 in the case of two-sided reinforcement; 𝜆: is the ratio of the sprayed area with respect 

to the entire wall area; 𝜌ℎ: is the reinforcement ratio in the horizontal direction; 𝐸𝐺 : is the elastic modulus of GFRPU; 

𝜖𝑚𝑎𝑥,𝐺: is the elongation rate at the point of fracture of GFRPU; 𝑡: is the thickness of the masonry wall; and 𝐿: is the 

length of the masonry wall. The material properties of the elastic modulus and elongation rate of GFRPU at the point 

of fracture were determined by a material test. 

(2) Modification of AC125 Model 

This model was presented in a report presented by the International Code Council (ICC). It predicted the shear 

strength to strengthen the UMW using one-sided FRP. The modification of the model caused by the GFRPU 

reinforcement is expressed as follows: 

𝐹𝐺 = 0.75𝛾𝜆𝜌ℎ𝑓𝑗𝑡𝐿                        (3) 

where 𝑓𝑗 represents the load-resisting capacity in the axial direction expressed as 

𝑓𝑗 = 𝛽𝐸𝐺 ≤ 0.75𝑓𝐺,𝑢                                     (4) 
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𝑓𝐺,𝑢 represents the ultimate tensile strength, and 𝛽 represents the shear reinforcement factor and was selected as 0.0447 

for GFRPU with a 5% weight ratio from the experimental results.  

Using Equations 2 and 3, the load-resisting capacity of GFRPU is listed in Table 4. Thus, it is illustrated that the 

formulae predict the load-resisting capacity accurately.  

Table 4. Comparison of mechanical properties of polyurea and GFRPU 

Specimen Experiment (kN) Modified Triantafillou (kN) Modified AC125 (kN) 

NONE 159.7 159.7 159.7 

1-All 207.94 208.12 207.9 

2-All 227.15 232.3 232.0 

1-X 198.9 193.6 193.4 

7. Conclusion 

In this study, the strengthening effect was investigated depending on the coating shape of GFRPU used to mix 

polyurea with milled glass fiber. The material property of GFRPU, which has a high tensile strength and elongation 

rate, improves the in-plane load-carrying capacity and ductility of the UMW. The in-plane strength of the GFRPU 

reinforcement was enhanced by lateral confinement of the masonry wall, which improved the shear-resisting capacity 

of the masonry wall. The ductile capacity of the GFRPU reinforcement can prevent secondary damage caused by the 

falling of bricks. Despite excellent material properties, because it is not easy to ensure the uniform dispersion of glass 

fiber and coating thickness during spraying, it was illustrated that the reinforced masonry wall could fail at a lower 

load than the expected load-carrying capacity. The experiment indicated that the one-sided reinforcement of the 

masonry wall was excellent in terms of economic and constructional aspects. By modifying the Triantafillou and 

AC125 models, this study proposed formulas to describe the degree of strengthening caused by one-sided GFRPU. In 

future studies, the relationships among strength, ductility, and energy absorption of masonry walls will be evaluated 

based on the thickness of the coating. 
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