13,159 research outputs found

    Kinematic Basis of Emergent Energetics of Complex Dynamics

    Full text link
    Stochastic kinematic description of a complex dynamics is shown to dictate an energetic and thermodynamic structure. An energy function φ(x)\varphi(x) emerges as the limit of the generalized, nonequilibrium free energy of a Markovian dynamics with vanishing fluctuations. In terms of the φ\nabla\varphi and its orthogonal field γ(x)φ\gamma(x)\perp\nabla\varphi, a general vector field b(x)b(x) can be decomposed into D(x)φ+γ-D(x)\nabla\varphi+\gamma, where (ω(x)γ(x))=\nabla\cdot\big(\omega(x)\gamma(x)\big)= ωD(x)φ-\nabla\omega D(x)\nabla\varphi. The matrix D(x)D(x) and scalar ω(x)\omega(x), two additional characteristics to the b(x)b(x) alone, represent the local geometry and density of states intrinsic to the statistical motion in the state space at xx. φ(x)\varphi(x) and ω(x)\omega(x) are interpreted as the emergent energy and degeneracy of the motion, with an energy balance equation dφ(x(t))/dt=γD1γbD1bd\varphi(x(t))/dt=\gamma D^{-1}\gamma-bD^{-1}b, reflecting the geometrical Dφ2+γ2=b2\|D\nabla\varphi\|^2+\|\gamma\|^2=\|b\|^2. The partition function employed in statistical mechanics and J. W. Gibbs' method of ensemble change naturally arise; a fluctuation-dissipation theorem is established via the two leading-order asymptotics of entropy production as ϵ0\epsilon\to 0. The present theory provides a mathematical basis for P. W. Anderson's emergent behavior in the hierarchical structure of complexity science.Comment: 7 page

    An integrative analysis of cancer gene expression studies using Bayesian latent factor modeling

    Full text link
    We present an applied study in cancer genomics for integrating data and inferences from laboratory experiments on cancer cell lines with observational data obtained from human breast cancer studies. The biological focus is on improving understanding of transcriptional responses of tumors to changes in the pH level of the cellular microenvironment. The statistical focus is on connecting experimentally defined biomarkers of such responses to clinical outcome in observational studies of breast cancer patients. Our analysis exemplifies a general strategy for accomplishing this kind of integration across contexts. The statistical methodologies employed here draw heavily on Bayesian sparse factor models for identifying, modularizing and correlating with clinical outcome these signatures of aggregate changes in gene expression. By projecting patterns of biological response linked to specific experimental interventions into observational studies where such responses may be evidenced via variation in gene expression across samples, we are able to define biomarkers of clinically relevant physiological states and outcomes that are rooted in the biology of the original experiment. Through this approach we identify microenvironment-related prognostic factors capable of predicting long term survival in two independent breast cancer datasets. These results suggest possible directions for future laboratory studies, as well as indicate the potential for therapeutic advances though targeted disruption of specific pathway components.Comment: Published in at http://dx.doi.org/10.1214/09-AOAS261 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Exact snapping loads of a buckled beam under a midpoint force

    Get PDF
    AbstractA buckled beam possesses two stable equilibrium configurations and is a natural bistable device. This paper first derives the exact critical load QcrS for a hinged buckled beam when it is subject to a concentrated force Q at the midpoint quasi-statically. In the case when the midpoint force is applied suddenly, the exact expression of a conservative dynamic critical load QcrD is derived, which guarantees that snapping will not occur as long as Q is smaller than this value

    When Crowdsourcing Meets Mobile Sensing: A Social Network Perspective

    Full text link
    Mobile sensing is an emerging technology that utilizes agent-participatory data for decision making or state estimation, including multimedia applications. This article investigates the structure of mobile sensing schemes and introduces crowdsourcing methods for mobile sensing. Inspired by social network, one can establish trust among participatory agents to leverage the wisdom of crowds for mobile sensing. A prototype of social network inspired mobile multimedia and sensing application is presented for illustrative purpose. Numerical experiments on real-world datasets show improved performance of mobile sensing via crowdsourcing. Challenges for mobile sensing with respect to Internet layers are discussed.Comment: To appear in Oct. IEEE Communications Magazine, feature topic on "Social Networks Meet Next Generation Mobile Multimedia Internet

    Revisiting the problem of audio-based hit song prediction using convolutional neural networks

    Full text link
    Being able to predict whether a song can be a hit has impor- tant applications in the music industry. Although it is true that the popularity of a song can be greatly affected by exter- nal factors such as social and commercial influences, to which degree audio features computed from musical signals (whom we regard as internal factors) can predict song popularity is an interesting research question on its own. Motivated by the recent success of deep learning techniques, we attempt to ex- tend previous work on hit song prediction by jointly learning the audio features and prediction models using deep learning. Specifically, we experiment with a convolutional neural net- work model that takes the primitive mel-spectrogram as the input for feature learning, a more advanced JYnet model that uses an external song dataset for supervised pre-training and auto-tagging, and the combination of these two models. We also consider the inception model to characterize audio infor- mation in different scales. Our experiments suggest that deep structures are indeed more accurate than shallow structures in predicting the popularity of either Chinese or Western Pop songs in Taiwan. We also use the tags predicted by JYnet to gain insights into the result of different models.Comment: To appear in the proceedings of 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP
    corecore