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a b s t r a c t

A buckled beam possesses two stable equilibrium configurations and is a natural bistable
device. This paper first derives the exact critical load QS

cr for a hinged buckled beam when it
is subject to a concentrated force Q at the midpoint quasi-statically. In the case when the
midpoint force is applied suddenly, the exact expression of a conservative dynamic critical
load QD

cr is derived, which guarantees that snapping will not occur as long as Q is smaller
than this value.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

An initially straight beam can be buckled into a curved shape by edge thrust. If both ends of the buckled beam are hinged
in space, it becomes a natural bistable device. When the buckled beam is loaded laterally, the buckled beam may jump from
one side to the other suddenly. This phenomenon is called snap-through buckling, which has wide applications in the design
of bistable devices. The mathematical modeling of buckled beams may be divided into two categories. In the first category,
exact geometry and elastica theory are used in the analysis of the deformation. Complicated numerical procedures are usu-
ally required to solve the nonlinear boundary value problem [1–3]. In the second category in which small deformation is
assumed, mathematical analysis may be simplified significantly. In some cases, exact solutions of the snapping loads may
be derived. This small-deformation analysis has attracted research interests recently, especially in MEMS applications. This
paper deals with the snapping loads of a buckled beam within the small-deformation range.

Seide [4] studied the snapping loads of a hinged buckled beam under a uniformly distributed lateral load. By retaining
only the first two terms in an infinite harmonic series, some closed-form expressions may be obtained for the critical loads.
Vangbo [5] fabricated a clamped–clamped buckled beam with MEMS technology and analyzed the load–deflection relation
when the buckled beam is subject to a midpoint force. Pinto and Goncalves [6] proposed a strategy for active control of a
hinged buckled beam under a sinusoidally distributed load. Cazottes et al. [7] studied the deformation of a clamped–clamped
buckled beam under a point force, which may be central or offset. In these previous research works, the prediction of snap-
ping load is of great interest. Although the critical loads may be written in closed-form formulas by a two-term approxima-
tion [4], or obtained with numerical methods [5–7], simple exact formulas are always desirable. In this paper we present the
exact closed-form expressions of the snapping loads, both static and dynamic, of a hinged buckled beam under a midpoint
force.
. All rights reserved.
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Fig. 1. A buckled beam under a point force at the midpoint. Dashed lines represent the two stable equilibrium configurations when Q = 0. The solid line
represents an unsymmetric deformation.
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2. Equations of motion

We assume that the original distance of the unstressed uniform beam is L0. The beam is compressed by an axial force and
buckles with the distance of the two ends A and B being shortened to L. The end shortening is defined as e = L0 � L. There are
two stable equilibrium positions, as shown by the dashed lines in Fig. 1. The origin of an xy-coordinate system is fixed at
point A. It is noted that the shapes of the stable unloaded buckled beam are symmetric with respect to the central line
x = L/2. We assume that the buckled beam is in the upper stable position and is under a point force Q downward at the mid-
point. The deformed shape may be symmetric or unsymmetric. The solid line in Fig. 1 represents an unsymmetric deforma-
tion y(x, t) under Q.

The equation of motion of the loaded buckled beam can be written as
qAy;tt ¼ �EIy;xxxx � py;xx � Qd x� L
2

� �
: ð1Þ
The parameters E, q, A, and I are Young’s modulus, mass density, area, and moment of inertia of the cross section of the beam.
d(�) is the Dirac delta function. p is the axial force,
pðtÞ ¼ AE
L

e� 1
2

Z L

0
ðy;xÞ

2dx
� �

ð2Þ
It is noted that a positive p represents a compressive force in the beam.
We define the following dimensionless parameters (with asterisks),
y� ¼ y
r
; x� ¼ px

L
; e� ¼ Le

p2r2 ; d�ð�Þ ¼ L
p

dð�Þ;

t� ¼ p2t

L2

ffiffiffiffiffiffiffi
EI
Aq

s
; p� ¼ L2p

p2EI
; Q � ¼ 2QL3

p4EIr
: ð3Þ
r is the radius of gyration of the cross section
ffiffi
I
A

q
. p⁄ = 1 represents the first Euler buckling load. Q⁄ = 1 means that the point

force is p2

2
r
L times of the buckling load. After substituting relations (3) into Eqs. (1) and (2), and dropping all the superposed

asterisks thereafter for simplicity, we obtain the dimensionless version of the equation of motion
y;tt þ y;xxxx þ py;xx ¼ �
p
2

Qd x� p
2

� �
; ð4Þ

pðtÞ ¼ e� 1
2p

Z p

0
ðy;xÞ

2dx: ð5Þ
The boundary conditions for y at x = 0 and p are
yð0Þ ¼ y;xxð0Þ ¼ yðpÞ ¼ y;xxðpÞ ¼ 0: ð6Þ
We expand y in Eqs. (4) and (5) as follows,
yðx; tÞ ¼ lim
N!1

XN

n¼1

anðtÞ sin nx: ð7Þ
N denotes the number of modes used in the expansions. After substituting Eq. (7) into (4) and (5) we obtain the equations
governing an,
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€an þ n4an � n2pan þ qn ¼ 0; n ¼ 1;2;3; . . . ð8Þ
where
p ¼ e� 1
4

X1
k¼1

k2a2
k ; ð9Þ

qn ¼ Q sin
np
2
; n ¼ 1;2;3; . . . ð10Þ
The overhead dot in Eq. (8) represents derivative with respect to time.

3. Equilibrium configurations

For quasi-static loading, Eq. (8) (€an neglected) represents an infinite number of coupled nonlinear algebraic equations for
the infinite number of coordinates an. The first question arises is how many equilibrium configurations are possible for a
specified e when Q = 0. This question can be readily answered from Eqs. (8) and (9). First of all, there always exists a trivial
solution with all an = 0. This is a straight configuration, denoted configuration P0. The other equilibrium solutions involve
only one harmonic mode ±sinnx, whose amplitude an depends on the end shortening e as,
an ¼ �
2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
e� n2
p

n
: ð11Þ
These one-mode solutions are denoted configurations Pþn and P�n , or collectively, P�n . The configuration P�n is symmetric when
n is an odd number, and is anti-symmetric when n is an even number.

It is noted that an in Eq. (11) is real only when n2
6 e. In the case when e < 1, P0 is the only static solution. When 4 > e P 1,

there are only three static solutions; they are P0; Pþ1 and P�1 . The number of static solutions increases as e increases. Among
the many static solutions only Pþ1 and P�1 are stable, as depicted by the dashed lines in Fig. 1. In the following, we assume that
the buckled beam is in position Pþ1 before external load Q is applied. In this position the initial height at the midpoint is, from
Eq. (11), h ¼ 2

ffiffiffiffiffiffiffiffiffiffiffi
e� 1
p

.
As Q increases from zero, in addition to the dominant mode ±sinnx, the static solutions consist of also an infinite number

of odd-number modes. As a consequence, all symmetric (unsymmetric) solutions remain symmetric (unsymmetric).
Although the solutions involve an infinite number of harmonic components when Q – 0, for simplicity we still use the nota-
tions P�n to name the solutions even if they are no longer one-mode solutions. The symmetric and unsymmetric equilibrium
configurations can be analyzed analytically as follows.

3.1. Symmetric solutions (P0; P
�
1 ; P

�
3 ; P

�
5 , etc.)

Symmetric solutions include P0 and the solutions involving only odd number of n in Eq. (7). The equations with even
number of n in Eq. (8) are satisfied automatically because of Eq. (10). The remaining coordinates a2i+1 can be related to a1

from Eq. (8) as
a2iþ1 ¼
ð�1Þiþ1a1Q

ð2iþ 1Þ2½4iðiþ 1Þa1 � Q �
; i ¼ 1;2;3; . . . ð12Þ
After substituting Eq. (12) into Eq. (9), and substituting the resulting p into Eq. (8) for n = 1, we obtain the following equation
for a1,
a1 1� eþ a2
1

4

� �
þ Q þ 1

4

X1
i¼1

Q 2a3
1

ð2iþ 1Þ2½4iðiþ 1Þa1 � Q �2

( )
¼ 0: ð13Þ
After solving a1 from Eq. (13), the other coordinates a2i+1 can be obtained from Eq. (12). It is noted that Eq. (13) includes the
a1 corresponding to position P0.

3.2. Unsymmetric solutions (P�2 ; P
�
4 ; P

�
6 , etc.)

This type of solutions involves one dominant even-number (n = 2j) harmonic component and an infinite number of odd-
number components. For this type of solution we can solve for p from the 2jth equation of Eq. (8) as
p ¼ 4j2
: ð14Þ
After substituting Eq. (14) into the (2i+1)th equation in Eq. (8) we can solve for a2i+1 exactly as
a2iþ1 ¼
q2iþ1

ð2iþ 1Þ2½4j2 � ð2iþ 1Þ2�
: ð15Þ



Fig. 2. Relation between the height of the midpoint y p
2

	 

and the magnitude Q of the point force for the case when e = 24. Solid and dashed lines represent

stable and unstable deformations, respectively. Unsymmetrical snapping occurs at point C1.
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After substituting Eqs. (14) and (15) into Eq. (9) we can solve for a2j as
a2j ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e

j2 � 4� 1

4j2

X1
i¼1;3;5;:::

q2
i

i2½4j2 � i2�2

vuut : ð16Þ
It is noted that the coordinates ai of an unsymmetric solution can be written in closed forms, while ai of a symmetric solution
cannot.

Fig. 2 shows the relation between the height of the midpoint y p
2

	 

and the magnitude Q of the point force for the case

when e = 24. For the case when Q = 0 in Fig. 2, there are 9 equilibrium solutions; they are P0, and P�n , where n = 1,2,3,4.
The two straight lines are the loci of the four unsymmetric solutions P�2 and P�4 , whose coordinates an are obtained exactly
from Eqs. (15) and (16). It is noted that Pþ2 and P�2 are two different solutions, but share the same locus in Fig. 2. The five
curved loci in Fig. 2 represent the symmetric solutions P0, P�1 and P�3 , whose coordinate a1 can be obtained by solving the
nonlinear Eq. (13) with a root finder in Mathematica. In the numerical work, instead of N =1, it is found that a finite number
of modes N = 7 in Eq. (7) is sufficient to guarantee the accuracy and convergence of the series.

4. Exact static critical load Q S
cr

The stability of the equilibrium configurations can be determined by either a vibration method or an energy method [8].
In Fig. 2, solid and dashed lines represent stable and unstable deformations, respectively. If the magnitude of the midpoint
force Q is increased slowly from zero, the midpoint position starts from point C0 to C1, at which the Pþ1 locus meets the P�2
locus. The buckled beam snaps unsymmetrically at point C1, and the corresponding Q is called the static critical load.

Fig. 3 shows another case when e = 4.5, in which the Pþ1 locus meets the P0 locus first, instead of P�2 , and forms a limit point
at C1. In this case the buckled beam snaps symmetrically. Apparently, there exists a special e between the ones in Figs. 2 and
3, denoted as �e, at which Pþ1 locus meets both P0 and P�2 loci simultaneously. This situation occurs when Eq. (13) admits a
double root, which requires the derivative of Eq. (13) with respect to a1 to vanish,
4� 4eþ 3a2
1 þ

X1
i¼1

Q2a2
1

ð2iþ 1Þ2½4iðiþ 1Þa1 � Q �2
3� 8iðiþ 1Þa1

4iðiþ 1Þa1 � Q

� �( )
¼ 0: ð17Þ
From Eq. (15) a1ðP�2 Þ can be written explicitly as
a1ðP�2 Þ ¼
Q
3
: ð18Þ
After substituting Eq. (18) into Eqs. (13) and (17), both equations can be rearranged further into the forms
1024ðe� 4Þ � 3p2Q 2 ¼ 0; ð19Þ
8192ð1� eÞ þ 69p2Q 2 ¼ 0: ð20Þ
After eliminating Q from Eqs. (19) and (20), �e is found to be 5.6. Therefore, for a buckled beam with e P �e, static snap-through
from position Pþ1 to P�1 will occur unsymmetrically. For this case the static critical loads can be solved exactly from Eq. (19) as



Fig. 3. Relation between the height of the midpoint y p
2

	 

and the magnitude Q of the point force for the case when e = 4.5. Solid and dashed lines represent

stable and unstable deformations, respectively. Symmetrical snapping occurs at point C1.
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QS
crðeÞ ¼

32
p

ffiffiffiffiffiffiffiffiffiffiffi
e� 4

3

r
for e P 5:6: ð21Þ
On the other hand, for 1 < e < �e, the buckled beam will snap symmetrically, whose critical load cannot be expressed in
closed form, because the relation between a1ðPþ1 Þ and Q cannot be written in an explicit manner.

It is noted that Eq. (19) can also be obtained from Eq. (16) by requiring the value in the square root to vanish for 2j = 2.
Therefore, Eq. (19) can also be interpreted as the minimum end shortening, denoted e2, for positions P�2 to exist when the
buckled beam is under point force Q. e2(Q) can be solved from Eq. (19) as
e2ðQÞ ¼ 4þ 3p2

1024
Q 2: ð22Þ
Similarly, there exists a minimum e, denoted e1(Q), for positions P�1 of the loaded buckled beam to exist. The relation e1(Q)
can only be obtained numerically from Eq. (13). In the special case when Q = 0, e1 = 1. In the case when e < e1(Q), positions P�1
does not exist, and there will be no snapping at all. e1(Q) and e2(Q) are related to dynamic snapping of the buckled beam, as
discussed in the next section.

5. Exact dynamic critical load Q D
cr

In the case when the point force is applied at time t = 0 suddenly instead of quasi-statically, the buckled beam may snap
from Pþ1 to P�1 dynamically. While it is in general difficult to determine the necessary and sufficient condition for dynamic
snap-through to occur, it is possible to establish a sufficient condition against dynamic snap-through in terms of the total
potential U of the loaded buckled beam. Based on this concept, we can define a critical value QD

cr . If the magnitude Q of
the concentrated force is smaller than QD

cr , it is guaranteed that the buckled beam will return to Pþ1 position after the transient
vibration is settled by damping. On the other hand, there is no guarantee whether the buckled beam will snap or not when Q
is greater than QD

cr . This conservative critical load Q D
cr can be determined from the condition that the energy barrier between

the two stable positions equals the total potential of the original stable position before external load is applied [9].
The dimensionless total potential U of an equilibrium configuration is defined as
U ¼ Us þ UQ ; ð23Þ
where Us is the strain energy of the deformed buckled beam and UQ is the potential corresponding to the point load,
Us ¼ 2p2 þ 2
p

Z p

0
ðy;xxÞ

2dx ¼ 2p2 þ
X1
n¼1

½n4a2
n�; ð24Þ

UQ ¼ 2Q y
p
2

� �
� y0

p
2

� �h i
¼ 2Q

X1
n¼1;3;5;...

ð�1Þ
n�1

2 an � 2
ffiffiffiffiffiffiffiffiffiffiffi
e� 1
p

" #
: ð25Þ
The initial total potential when Q = 0 is denoted U0.
The total potentials of the equilibrium configurations Pþj and P�j are equal for Q – 0 when j is an even number, denoted

UðP�j Þ. UðPþj Þ and UðP�j Þ are not equal when j is an odd number. In the case when the loaded buckled beam possesses
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solutions P�2 (when e P e2), the energy barrier between the two stable configurations Pþ1 and P�1 can be proved to be UðP�2 Þ.
On the other hand, when P�2 do not exist but P�1 does (e1 < e < e2), the energy barrier will be U(P0).

Exact expression of the conservative critical load Q D
cr for the case when e P e2 is possible because the coordinates a2 and

a2i+1 of P�2 can be written in closed forms. From Eqs. (23)–(25), UðP�2 Þ can be written as
Fi

Fi
UðP�2 Þ ¼ 32� 4Q
ffiffiffiffiffiffiffiffiffiffiffi
e� 1
p

þ 16a2
2 þ

X1
n¼1;3;5;:::

n4a2
n þ 2ð�1Þ

n�1
2 Qan

h i
: ð26Þ
After substituting a2 from Eq. (16) and a2i+1 from Eq. (15) into Eq. (26), the total potential UðP�2 Þ can be simplified to the fol-
lowing form,
UðP�2 Þ ¼
p2

32
Q 2 � 4Q

ffiffiffiffiffiffiffiffiffiffiffi
e� 1
p

þ 16ðe� 2Þ: ð27Þ
The total potential of the original stable position before external load is applied is U0ðP�1 Þ ¼ 4e� 2. From the condition that
UðP�2 Þ in Eq. (27) equals U0ðP�1 Þ, we can derive the exact expression of Q D

cr as
Q D
crðeÞ ¼

8
p2 ½8

ffiffiffiffiffiffiffiffiffiffiffi
e� 1
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
64ðe� 1Þ þ p2ð15� 6eÞ

q
� for e P 4:38: ð28Þ
g. 5. Relation between QD
cr and h for a buckled beam and a shallow arch. Exact formulas can be found for the curves beyond the black dots.

g. 4. Relation between QS
cr and h for a buckled beam and a shallow arch. Exact formulas can be found for the curves beyond the black dots.
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Eq. (28) is valid when P�2 exists, i.e., e P e2. From Eqs. (22) and (28) we can solve for the minimum e above which Eq. (28) is
valid as e = 4.38.

6. Comparison to a shallow arch

It is noted that a buckled beam may look like a shallow arch in appearance before the lateral load is applied. A shallow
arch is a curved beam which is stress free before external forces are applied. A buckled beam, on the other hand, is stress free
when it is straight. The exact static and dynamic critical loads of a half-sine shallow arch have been derived by Chen et al.
[10] with a similar method. It is of interest to compare the critical loads of a shallow arch and a buckled beam.

QS
crðeÞ in Eq. (21) and Q D

crðeÞ in Eq. (28) can be rewritten in terms of the initial midpoint height h by using the relation
h ¼ 2

ffiffiffiffiffiffiffiffiffiffiffi
e� 1
p

as
QS
crðhÞ ¼

16
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2

3
� 4

s
for h P 4:29; ð29Þ

QD
crðhÞ ¼

4
p2 ½8h�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
36p2 þ h2ð64� 6p2Þ

q
� for h P 3:68: ð30Þ
The critical loads of a hinged shallow arch are
QS�
cr ðhÞ ¼

h�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 � ð1þ jÞð144� 8h2Þ

q
1þ j

for h P 4:81; ð31Þ

QD
crðhÞ ¼

16
3p2 ½8h�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
36p2 þ h2ð64� 6p2Þ

q
� for h P 2

ffiffiffi
3
p

: ð32Þ
The constant j in Eq. (31) is
j ¼ 27p2 � 256
256

: ð33Þ
It is noted that the dynamic critical load of a buckled beam is exactly three quarters of that of a shallow arch. Figs. 4 and 5
show the static and dynamic critical loads, respectively, as functions of h for a shallow arch and a buckled beam. For a buck-
led beam, bistable states always exist as long as h is nonzero. For a shallow arch, on the other hand, static critical load exists
only when h P 2, and dynamic critical load exists only when h P 2.48.

7. Conclusions

This paper presents the critical conditions for snap-through buckling of a hinged buckled beam under a concentrated
force at the midpoint. In the case when the concentrated force is applied quasi-statically, the buckled beam will snap unsym-
metrically when the end shortening e is greater than 5.6. The static critical load Q S

cr can be found in an exact form (Eq. (21)).
In the case when the concentrated force is applied suddenly, the exact form of a conservative dynamic critical load Q D

cr (Eq.
(28)) can be derived when e is greater than 4.38. The critical loads of a buckled beam are approximately three quarters of the
ones of a shallow arch with the same initial shape.
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