10 research outputs found

    Fixed and mobile energy storage coordination optimization method for enhancing photovoltaic integration capacity considering voltage offset

    Get PDF
    Mobile energy storage has the characteristics of strong flexibility, wide application, etc., with fixed energy storage can effectively deal with the future large-scale photovoltaic as well as electric vehicles and other fluctuating load access to the grid resulting in the imbalance of supply and demand. To this end, this paper proposes a coordinated two-layer optimization strategy for fixed and mobile energy storage that takes into account voltage offsets, in the context of improving the demand for local PV consumption. Among them, the upper layer optimization model takes into account the minimum operating cost of fixed and mobile energy storage, and the lower layer optimization model minimizes the voltage offset through the 24-h optimal scheduling of fixed and mobile energy storage in order to improve the in-situ PV consumption capacity. In addition, considering the multidimensional nonlinear characteristics of the model, the interaction force of particles in the Universe is introduced, and the hybrid particle swarm-gravitational search algorithm (PSO-GSA) is proposed to solve the model, which is a combination of the individual optimization of the particle swarm algorithm and the local search capability of the gravitational search algorithm, which improves the algorithm’s optimization accuracy. Finally, the feasibility and effectiveness of the proposed model and method are verified by simulation analysis with IEEE 33 nodes

    Markedly enhanced absorption and direct radiative forcing of black carbon under polluted urban environments

    Get PDF
    Black carbon (BC) exerts profound impacts on air quality and climate because of its high absorption cross-section over a broad range of electromagnetic spectra, but the current results on absorption enhancement of BC particles during atmospheric aging remain conflicting. Here, we quantified the aging and variation in the optical properties of BC particles under ambient conditions in Beijing, China, and Houston, United States, using a novel environmental chamber approach. BC aging exhibits two distinct stages, i.e., initial transformation from a fractal to spherical morphology with little absorption variation and subsequent growth of fully compact particles with a large absorption enhancement. The timescales to achieve complete morphology modification and an absorption amplification factor of 2.4 for BC particles are estimated to be 2.3 h and 4.6 h, respectively, in Beijing, compared with 9 h and 18 h, respectively, in Houston. Our findings indicate that BC under polluted urban environments could play an essential role in pollution development and contribute importantly to large positive radiative forcing. The variation in direct radiative forcing is dependent on the rate and timescale of BC aging, with a clear distinction between urban cities in developed and developing countries, i.e., a higher climatic impact in more polluted environments. We suggest that mediation in BC emissions achieves a cobenefit in simultaneously controlling air pollution and protecting climate, especially for developing countries

    Research on Urban Traffic Incident Detection Based on Vehicle Cameras

    No full text
    Situational detection in the traffic system is of great significance to traffic management and even urban management. Traditional detection methods are generally based on roadside equipment monitoring roads, and it is difficult to support large-scale and fine-grained traffic incident detection. In this study, we propose a detection method applied to the mobile edge, which detects traffic incidents based on the video captured by vehicle cameras, so as to overcome the limitations of roadside terminal perception. For swarm intelligence detection, we propose an improved YOLOv5s object detection network, adding an atrous pyramid pooling layer to the network and introducing a fusion attention mechanism to improve the model accuracy. Compared with the raw YOLOv5s, the mAP metrics of our improved model are increased by 3.3% to 84.2%, enabling it to detect vehicles, pedestrians, traffic accidents, and fire traffic incidents on the road with high precision in real time. This provides information for city managers to help them grasp the abnormal operation status of roads and cities in a timely and effective manner

    Research on Urban Traffic Incident Detection Based on Vehicle Cameras

    No full text
    Situational detection in the traffic system is of great significance to traffic management and even urban management. Traditional detection methods are generally based on roadside equipment monitoring roads, and it is difficult to support large-scale and fine-grained traffic incident detection. In this study, we propose a detection method applied to the mobile edge, which detects traffic incidents based on the video captured by vehicle cameras, so as to overcome the limitations of roadside terminal perception. For swarm intelligence detection, we propose an improved YOLOv5s object detection network, adding an atrous pyramid pooling layer to the network and introducing a fusion attention mechanism to improve the model accuracy. Compared with the raw YOLOv5s, the mAP metrics of our improved model are increased by 3.3% to 84.2%, enabling it to detect vehicles, pedestrians, traffic accidents, and fire traffic incidents on the road with high precision in real time. This provides information for city managers to help them grasp the abnormal operation status of roads and cities in a timely and effective manner

    High-fidelity and clean nanotransfer lithography using structure-embedded and electrostatic-adhesive carriers

    No full text
    Abstract Metallic nanostructures are becoming increasingly important for both fundamental research and practical devices. Many emerging applications employing metallic nanostructures often involve unconventional substrates that are flexible or nonplanar, making direct lithographic fabrication very difficult. An alternative approach is to transfer prefabricated structures from a conventional substrate; however, it is still challenging to maintain high fidelity and a high yield in the transfer process. In this paper, we propose a high-fidelity, clean nanotransfer lithography method that addresses the above challenges by employing a polyvinyl acetate (PVA) film as the transferring carrier and promoting electrostatic adhesion through triboelectric charging. The PVA film embeds the transferred metallic nanostructures and maintains their spacing with a remarkably low variation of 2), and complex 3D structures. Moreover, the thin and flexible carrier film enables transfer on highly curved surfaces, such as a single-mode optical fiber with a curvature radius of 62.5 μm. With this strategy, we demonstrate the transfer of metallic nanostructures for a compact spectrometer with Cu nanogratings transferred on a convex lens and for surface-enhanced Raman spectroscopy (SERS) characterization on graphene with reliable responsiveness

    Mutual promotion effect between aerosol particle liquid water and nitrate formation lead to severe nitrate-dominated particulate matter pollution and low visibility

    No full text
    Abstract. As has been the case in North America and Western Europe, the SO2 emissions substantially reduced in North China Plain (NCP) in recent years. A dichotomy of reductions in SO2 and NOx concentrations result in the frequent occurrences of nitrate (pNO3−)-dominated particulate matter pollution over NCP. In this study, we observed a polluted episode with the nitrate mass fraction in non-refractory PM1 (NR-PM1) up to 44 % during wintertime in Beijing. Based on this typical pNO3−-dominated haze event, the linkage between aerosol water uptake and pNO3− formation, further impacting on visibility degradation, have been investigated based on field observations and theoretical calculations. During haze development, as ambient relative humidity (RH) increased from ~ 10 % up to 70 %, the aerosol particle liquid water increased from ~ 1 μg/m3 at the beginning to ~ 75 μg/m3 at the fully-developed haze period. Without considering the water uptake, the particle surface area and the volume concentrations increased by a factor of 4.1 and 4.8, respectively, during the development of haze event. Taking water uptake into account, the wet particle surface area and volume concentrations enhanced by a factor of 4.7 and 5.8, respectively. As a consequence, the hygroscopic growth of particles facilitated the condensational loss of dinitrogen pentoxide (N2O5) and nitric acid (HNO3) to particles contributing pNO3−. From the beginning to the fully-developed haze, the condensational loss of N2O5 increased by a factor of 20 when only considering aerosol surface area and volume of dry particles, while increasing by a factor of 25 considering extra surface area and volume due to water uptake. Similarly, the condensational loss of HNO3 increased by a factor of 2.7~2.9 and 3.1~3.5 for dry and wet aerosol surface area and volume from the beginning to the fully-developed haze period. Above results demonstrated that the pNO3− formation is further enhanced by aerosol water uptake with elevated ambient RH during haze development, in turn, facilitating the aerosol taking up water due to the hygroscopicity of nitrate salt. Such mutual promotion effect between aerosol particle liquid water and nitrate formation can rapidly degrade air quality and halve visibility within one day. Reduction of nitrogen-containing gaseous precursors, e.g., by control of traffic emissions, is essential in mitigating severe haze events in NCP
    corecore