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Mobile energy storage has the characteristics of strong flexibility, wide
application, etc., with fixed energy storage can effectively deal with the future
large-scale photovoltaic as well as electric vehicles and other fluctuating load
access to the grid resulting in the imbalance of supply and demand. To this end,
this paper proposes a coordinated two-layer optimization strategy for fixed and
mobile energy storage that takes into account voltage offsets, in the context of
improving the demand for local PV consumption. Among them, the upper layer
optimization model takes into account the minimum operating cost of fixed and
mobile energy storage, and the lower layer optimization model minimizes the
voltage offset through the 24-h optimal scheduling of fixed and mobile energy
storage in order to improve the in-situ PV consumption capacity. In addition,
considering the multidimensional nonlinear characteristics of the model, the
interaction force of particles in the Universe is introduced, and the hybrid particle
swarm-gravitational search algorithm (PSO-GSA) is proposed to solve themodel,
which is a combination of the individual optimization of the particle swarm
algorithm and the local search capability of the gravitational search algorithm,
which improves the algorithm’s optimization accuracy. Finally, the feasibility and
effectiveness of the proposed model and method are verified by simulation
analysis with IEEE 33 nodes.
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1 Introduction

With the large-scale integration and increasing penetration rate of distributed energy
sources, the stochastic, intermittent, and fluctuating nature of their outputs constrains the
absorptive capacity of the distribution network. Energy storage systems, leveraging their
flexible energy management capabilities and rapid power regulation capabilities, can
address issues such as wind and solar power curtailment, voltage violations, and
insufficient peak shaving capacity in the distribution network. Properly configuring
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energy storage systems is of paramount importance for the efficient
operation of the distribution network (Wang et al., 2014; Wang
et al., 2021).

In recent years, scholars both domestically and internationally
have conducted research on grid energy storage optimization
strategies to facilitate the integration of renewable energy. In the
realm of fixed energy storage systems, Fixed Energy Storage Systems
(FESS), literature (Shi et al., 2021) establishes a joint configuration
model for solar and storage with the objective of optimizing
photovoltaic integration and system economy. Literature (Zhou
et al., 2016), considering the impact of solar and storage as well
as demand response, develops a microgrid investment profit model
with the goals of optimizing photovoltaic utilization and operational
economy. Literature (Pasetti et al., 2021) indicates that as the
capacity and quantity of energy storage systems increase, they
become susceptible to network attacks. Application of Man-in-
the-Middle (MitM) attacks on BESS can decrease the lifespan of
storage, lead to economic losses, and affect the security and stability
of the power grid. Collaboration with Distribution System
Operators (DSOs) through increased cross-checks is proposed as
a preventive measure. Literature (Morstyn et al., 2018) reviews the
progress of microgrid energy storage coordination control strategies
and proposes a distributed intelligent microgrid control framework
based on intelligent agent networks. The framework aims to provide
a universally applicable control strategy for the development of
intelligent decentralized power grids, offering insights into the
future development of distribution networks. Literature (Lu et al.,
2023) presents a dual-layer optimization model for the rapid
recovery of EMS distribution systems. The upper layer minimizes
system load shedding rate from a scheduling perspective, while the
lower layer addresses post-disaster economic dispatch issues
through Karush-Kuhn-Tucker (KKT) simplification into a single-
layer mixed-integer linear programming problem. Focusing on
flexible switchgear in AC/DC distribution networks, literature
(Ma et al., 2023) considers equipment constraints, peak shaving,
and voltage deviation constraints to build a real and reactive power
dispatch model with the minimum operating cost as the primary
objective. Through the construction of a two-stage stochastic-
distributionally robust optimization model, solar output
variability is simulated. Literature (Wei et al., 2023) proposes a
flexible interconnection distribution network optimization and
control strategy considering transformer and SOP loss
characteristics. A dual-layer model is established with the upper
layer aiming for the lowest annual comprehensive cost and the lower
layer seeking the lowest comprehensive loss. Considering intelligent
topology changes, literature (Pan et al., 2023) introduces a
consistency algorithm and establishes a SOP cluster control
model for distribution networks. Through an SOP cluster
strategy based on the consistency algorithm, global SOP
collaborative optimization is achieved, enhancing the balance of
distribution network feeders. Literature (Liu et al., 2023) presents a
dual-layer planning method for distributed power sources and
generalized energy storage. The upper layer addresses location
and capacity decisions considering system planning costs and
response incentives, while the lower layer uses an adaptive
parameter particle swarm optimization algorithm to solve the
optimization problem based on the continuity and reliability of
the distribution network. Literature (Yang et al., 2022) introduces a

multi-objective dual-layer structure for energy storage systems. The
inner layer aims to maximize operational revenue using the peafowl
optimization algorithm, while the outer layer targets minimum
operation and maintenance costs, minimum voltage fluctuation,
and minimum load fluctuation using the multi-objective peafowl
optimization algorithm. Literature (Mao et al., 2019) introduces a
dual-layer optimization for generalized energy storage
configuration, with the upper layer utilizing a genetic algorithm
for energy storage configuration and the lower layer obtaining
optimal energy storage operation using dynamic programming.
In the aforementioned studies, joint planning of energy storage
primarily focuses on the reliability and economic viability on the
grid side, yet there is a lack of research on the impact of the
uncertainty of distributed energy source outputs on energy
storage planning and the optimization of distribution
network operation.

Mobile Energy Storage Systems (MESS) are primarily composed
of energy storage devices and mobile equipment. Compared to fixed
energy storage, MESS can flexibly select access points and capacities
based on load characteristics, reducing daily maintenance costs,
peak shaving, and enhancing the flexibility of the distribution
network. Literature (Astero et al., 2017) indirectly controls
photovoltaic integration through electricity prices for electric
vehicles. Literature (Kwon et al., 2020) establishes two-stage
mobile energy storage optimization models. Literature
(Abdeltawab and Mohamed, 2017) considers the fuel costs of
mobile energy storage vehicles and the full lifecycle of energy
storage. Literature (Yao et al., 2020) utilizes mobile energy
storage as a backup power source for natural disasters or
emergency situations. In summary, MESS possesses both mobility
and energy storage functions, allowing flexible selection of access
points and capacities based on grid operating conditions. This
capability can effectively avoid redundant waste, reduce daily
maintenance costs, and significantly improve the economic
viability of peak shaving. However, its drawback lies in its
smaller capacity. MESS can complement fixed energy storage,
jointly participating in grid regulation. Through real-time
monitoring of power system operations, rational control of both
BESS and MESS is crucial for improving load characteristics (Chen
et al., 2016).

This paper integrates FESS and MESS collaborative
optimization methods, proposing energy storage configuration
and operation strategies to enhance photovoltaic absorption
capacity in extreme scenarios. Both upper and lower layers
adopt an improved Particle Swarm Optimization-
Gravitational Search Algorithm (PSO-GSA) method,
combining the individual optimization capability of the
particle swarm algorithm with the local search capability of
the gravitational search algorithm to enhance global search
capability. In the upper layer, decision variables include fixed
energy storage site selection, capacity, and mobile energy storage
access nodes and capacity, comprehensively considering the
economic operation of FESS and MESS. The lower layer
dynamically optimizes energy storage charging and
discharging strategies with the objective of minimizing grid
voltage deviation. In extreme photovoltaic scenarios, the goal
is to enhance on-site photovoltaic absorption capacity and
improve grid operation conditions.
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2 Distribution network
component model

2.1 Photovoltaic penetration rate definition

Photovoltaic penetration rate is defined as the ratio of the
maximum photovoltaic output power to the maximum load
output power:

DPV � FMAX

FL,MAX
× 100% (1)

In the formula 1:DPV represents the photovoltaic penetration
rate; FMAX represents the maximum photovoltaic output power;
FL,MAX represents the maximum load output power.

People have different criteria for judging the level of
photovoltaic penetration. Generally, when it is below 20%, it
is considered a low-penetration stage, where the scale of
photovoltaic integration into the grid is small, and its impact
on the power grid is minimal. As the penetration of photovoltaics
increases, when the photovoltaic penetration rate reaches 20%–

80%, it becomes necessary to address the issue of enhancing the
carrying capacity of photovoltaics in concentrated areas. At this
stage, the significant integration of photovoltaics may lead to
power reverse flow in the power system. When the photovoltaic
penetration rate exceeds 100%, it can be considered a high-
penetration stage. At this point, there is a substantial reverse
flow of photovoltaic power into the power system, and the role of
photovoltaic energy shifts to the supply side. The difficulty of on-
site absorption of photovoltaics increases, requiring
interventions such as energy storage to enhance the capacity
for photovoltaic integration.

2.2 Photovoltaic on-site absorption
rate definition

The on-site absorption of photovoltaic power is
primarily influenced by the load and energy storage. In this
paper, we define the on-site absorption rate of photovoltaic
power as:

φ � ∑19
t�6

PPV,fact,t − PLOAD,t − PESS,t

PPV,fact,t
( ) × 100% (2)

In the formula 2: Where φ represents the on-site
absorption rate of photovoltaic power; PPV,fact,t represents
the actual generation of photovoltaics at time t. PLOAD,T

represents the distribution network load during the
photovoltaic generation period at time t, and PESS,t represents
the load for energy storage charging during the photovoltaic
generation period at time t.

2.3 Distributed power generation model

2.3.1 Photovoltaic output model
The photovoltaic generation intensity is controlled by the

regional solar irradiance. Solar irradiance is commonly

considered to follow a Beta distribution, where the Beta
probability density function is given by:

f r( ) � Γ α + β( )
Γ α( )Γ β( ) r

rmax
( )α−1

1 − r

rmax
( )β−1

(3)

In the formula 3:Whereα and β are the shape parameters of the Beta
distribution; r is the actual solar irradiance during a specific time period,
and rmax is the maximum solar irradiance during that time period.
Research indicates that the output power of photovoltaic generation is
influenced by solar irradiance, photovoltaic panel area, and photovoltaic
conversion efficiency. Therefore, the relationship between the output
power of photovoltaic generation and solar irradiance is given by:

Ps � rMAη (4)

f r( ) � Γ α + β( )
Γ α( )Γ β( ) PS

rmaxAη
( )α−1

1 − PS

rmaxAη
( )β−1

(5)

In the formulas 4, 5: Where Ps represents the photovoltaic output
power; A is the photovoltaic panel area; η is the photovoltaic
conversion efficiency.

2.3.2 Fixed energy storage model
The charging and discharging model for fixed energy storage is

as follows:

PES,j t( )≤ 0, ESj t( ) � ESj t − 1( ) 1 − δ( ) + PES,j t( )ηcΔt

PES,j t( )> 0, ESj t( ) � ESj t − 1( ) 1 − δ( ) − PES,j t( )Δt
ηd

∑T
t�1

PES,j t( )a1ηc + PES,j t( ) a2
ηd

[ ]Δt � 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(6)

In the formula 6: Where PES,j(t)≤ 0 represents energy storage
charging, ηc represents the charging efficiency of energy storage, and
in this case a1 � 1, a2 � 0; PES,j(t)> 0 represents energy storage
discharging, ηd represents the discharging efficiency of energy
storage, and in this case a1 � 0, a2 � 1.

2.3.3 Mobile energy storage model
The charging and discharging model for mobile energy storage is

as follows:

−PN ≤PMES
i,t ≤PN (7)

EMES
t+1 � EMES

t − PMES
i,t Δt (8)

EMES
min ≤EMES

t ≤EMES
max (9)

EMES
0 � EMES

T (10)

In the formulas 7–10: Where PN represents the rated power of
mobile energy storage; PMES

i,t represents the injected power at node i by
mobile energy storage at time t; EMES

t represents the state of charge of
mobile energy storage at time t; EMES

min and EMES
max are the maximum and

minimum values of the state of charge of mobile energy storage,
respectively; EMES

0 and EMES
T are the state of charge of mobile energy

storage at the beginning and end of the operating cycle, respectively.

2.4 Electric vehicle charging model

Monte Carlo sampling is used to analyze the electric vehicle
charging model.
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(1)Probability Distribution of Daily Driving Distance

Processing behavioral data on electric vehicle usage, it is
determined that the daily driving distance follows a log-normal
distribution, i.e.,:

fs x( ) � 1
x

1
2π

√ exp − ln x − μs( )2
2σ2s

( ) (11)

In the formula 11: Where μs taking the mean as 3.2 and σs the
variance as 0.88.

(2)Probability Distribution of Initial Charging Time

The charging time of electric vehicles ft(x) follows a normal
distribution, i.e.,:

ft x( ) �
1
σs

1
2π

√ exp − x − μs( )2
2σ2s

( ), μs − 12< x< 24( )
1
σs

1
2π

√ exp − x + 24 − μs( )2
2σ2s

( ), 0<x< μs − 12( )

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(12)

In the formula 12: Where μs taking the mean as 17.6 and σs the
variance as 3.4.

3 Construction of dual-layer
optimization model in electrical
engineering terminology

The dual-layer optimization model as shown in Figure 1.
The upper-layer optimization model has decision variables for

fixed energy storage location, capacity, and mobile energy storage
access nodes and capacity. The optimization objectives include
minimizing investment costs, operating costs, power purchase

costs, and mobile energy storage migration costs. The constraints
involve energy storage output constraints and grid power purchase
constraints.

The lower-layer optimization model has decision variables for the
charging and discharging power of fixed and mobile energy storage
during different time periods. The optimization objective is tominimize
voltage offset. Constraints include voltage amplitude constraints,
distributed renewable energy output constraints, and power balance
constraints.

The dispatch center inputs photovoltaic data, daily load data,
and electric vehicle charging station data. The upper layer solves the
model to minimize operating costs, and the location and capacity of
energy storage are passed as parameters to the lower layer. The lower
layer controls the charging and discharging power of energy storage
at each moment to minimize voltage offset. Iterations are performed
until the optimal control strategy is obtained.

3.1 Upper-layer objective function

The upper layer involves multi-energy storage optimization
configuration, with the objective function being the minimization
of equipment investment costs, equipment operating costs, and grid
power purchase costs.

fup � w1 × f1 + w2 × f2 + w3 × f3 + w4 × f4 (13)

In the formula 13: Where f1 represents equipment investment
costs; f2 represents equipment operating costs; f3 is the grid power
purchase cost; f4 represents the cost of mobile energy storage
migration; w1、w2、w3、w4 is a random number between 0 and
1, and w1 + w2 + w3 + w4 � 1 .

(1) Minimize equipment investment costs

The equipment investment cost includes one-time investment
costs for both energy storage devices and photovoltaic equipment.

FIGURE 1
Dual layer optimization model.
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f1 � Q∑Z
z�1

NzCz

Q � q 1 + q( )y
1 + q( )y − 1

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(14)

In the formula 14: Q represents the capital recovery factor; q
represents the annual interest rate; Z represents equipment type; Cz

represents the investment cost of equipment type Z; Nz represents
the number of equipment type Z.

(2) Minimize equipment operating costs

The operating cost of equipment refers to the costs associated
with regular maintenance and repair of equipment damage.

f2 � ∑T
t�1
∑Z
z�1

Closs
z t + A (15)

In the formula 15: Closs
z represents the daily operational

maintenance cost of equipment z; A represents the cost of
repairing equipment damage, where t is the operating time.

(3) Minimize grid power purchase costs

f3 � ∑24
t�1
Pline
t wline

t (16)

In the formula 16: Pline
t represents the power purchased from the

grid at time t, and wline
t represents the electricity price at time t.

(4) Minimize the cost of relocating mobile energy storage

f4 � ∑24
t�1
CFUELODISTANCE (17)

In the formula 17: Where f4 represents the cost of relocating
mobile energy storage; CFUEL represents the unit distance cost, and
ODISTANCE represents the distance traveled by the energy
storage vehicle.

3.2 Upper-layer objective constraints

(1) Energy Storage Output Constraint.

PES,j
min ≤PES,j t( )≤PES,j

max

0.2≤ SOCj t( )≤ 0.9
SOCj 0( ) � 0.5

⎧⎪⎨⎪⎩ (18)

In the formula 18: Where PES,j
min represents the lower limit of the

charging or discharging power for the jth energy storage unit, PES,j(t)
represents the charging or discharging power of the jth energy storage
unit at time t, PES,j

max represents the upper limit of the charging or
discharging power for the jth energy storage unit, and SOCj(t)
represents the state of charge of the energy storage at time t, with a
range from 0.2 to 0.9. When t is zero, the initial state of charge SOCj(0)
is set to 0.5.

(2) Electricity Purchasing Power Constraint

Pt,buy ≥ 0 (19)

In the formula 19: Where Pt,buy represents the electricity
purchasing power.

3.3 Lower-level objective function

The lower level involves 24-h economic dispatch of the
distribution network, with the minimization of voltage deviation
as the objective function.

In power systems, voltage difference reflects the operational safety
of the distribution network, as excessive voltage deviation can impact
the operation of electrical equipment and the quality of electrical energy.

flow � ∑24
t�1

∑N
i�1

ΔUi,t

Ui,max − Ui,min
( )2⎛⎝ ⎞⎠ (20)

ΔUi,t �
Ui,min − Ui,t, Ui,t <Ui,min

0, Ui,min ≤Ui,t ≤Ui,max

Ui,t − Ui,max, Ui,t ≥Ui,max

⎧⎪⎨⎪⎩ (21)

In the formulas 20, 21: Where ΔUi,t represents the voltage
deviation at time t, Ui,t represents the voltage at node i at time t,
and Ui,min, Ui,max represent the upper and lower limits of node i,
respectively. In medium and low voltage distribution networks, the
permissible range for voltage deviation is −5% to +5%.

3.4 Lower-level objective constraints

(1) Voltage magnitude constraints

Ui,min ≤Ui,t ≤Ui,max (22)
In the formula 22: Where Ui,min represents the voltage lower

limit at node i, Ui represents the voltage at node i, and Ui,max

represents the voltage upper limit at node i.

(2) Distributed New Energy Output Constraint

Ppv,min ≤Pt
pv ≤Ppv,max (23)

In the formula 23: Where Ppv,min represents the minimum
output of photovoltaic power, Pt

pv represents the photovoltaic
power output at time t, and Ppv,max represents the maximum
output of photovoltaic or wind power.

(3) Power Balance Constraint

Ps,i − PL,i � Ui∑n
j�1
Uj Gij cos θij + Bij sin θij( )

Qs,i − QL,i � Ui∑n
j�1
Uj Gij sin θij − Bij cos θij( )

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(24)

In the equation 24: Ps,i represents the active power output at
node i due to the power source; PL,i represents the active power
output of the load at node i; Ui represents the voltage at node i; Uj

represents the voltage at node j; Qs,i represents the reactive power
output at node i due to the power source;QL,i represents the reactive
power output of the load at node i.
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4 Optimization solving algorithm based
on PSO-GSA

The ultimate goal of heuristic algorithms is global optimization.
To achieve this goal, the exploratory and exploitative capabilities of
heuristic algorithms are particularly crucial.

4.1 Particle swarm algorithm

The particle swarm algorithm (Anantathanavit and Munlin, 2013)
models each particle considering the current velocity, current position,
and a distance-modifying function to pbest and gbest as follows.

vt+1i � wvti + c1 × rand × pbestti − xt
i( ) + c2 × rand × gbest − xt

i( )
(25)

In the equation 25: w represents the weighted function; vti
represents the velocity of the i th particle at generation t; c1
represents the weighting factor; rand is a random number between
0 and 1;pbestti represents the best position of the particle at generation t;
xt
i represents the position of the particle at generation t; c2 represents

the weighting factor; gbest represents the best solution. wvti represents
the exploration ability of the particle; c1 × rand × (pbestti − xt

i )
represents the personal ability of the particle; c2 × rand × (gbest −
xt
i ) represents the cooperative ability of the particle

xt+1
i � xt

i + vt+1i (26)

In the formula 26: Where xt+1
i represents the position of particle

i at generation t+1.

4.2 Gravity search algorithm

GSA (Doraghinejad et al., 2012) originates from Newton’s
fundamental theory: the interaction force among particles in
the Universe, a force proportional to the particle mass and inversely
proportional to the distance between them, is modeled as follows.

Fd
ij t( ) � G t( )Mpi t( ) × Maj t( )

Rij t( ) + ξ
xd
j t( ) − xd

i t( )( ) (27)

In the formula 27: Where Fd
ij(t) represents the gravitational

force of particle i on particle j in the d-dimensional space at the
tth iteration; G(t) represents the value of universal gravitational
force at the tth iteration; Mpi(t) is the active gravitational mass;
Maj(t) is the passive gravitational mass; Rij(t) represents the
Euclidean distance between i and j; ξ is a constant; xd

j(t)
represents the position of particle j in the d-dimensional
space at the tth generation; xd

i (t) represents the position of
particle i in the d-dimensional space at the tth generation.

G t( ) � G0 × e
−∂×iter
max iter (28)

In the formula 28:Where ∂ represents the descent coefficient;G0

represents the initial value; iter is the current iteration number;
max iter is the maximum iteration number.

Fd
i t( ) � ∑N

j ≠ i,j ∈ kbest

randjF
d
ij t( ) (29)

In the formula 29: Where Fd
i (t) represents the total force

experienced by individual i in the d-dimensional space at the
tth iteration.

adi t( ) � Fd
i t( )

Mi t( ) (30)

In the formula 30: Where represents adi (t) the equation for
the acceleration of individual i in the d-dimensional space;Mi(t)
represents the mass of individual i at generation t.

vdi t + 1( ) � rand × vdi t( ) + adi t( ) (31)

In the formula 31: Where vdi (t + 1) represents the velocity of
particle i in the d-dimensional space at generation t+1.

xd
i t + 1( ) � xd

i t( ) + vdi t + 1( ) (32)

In the formula 32: Where xd
i (t + 1) represents the position of

particle i in the d-dimensional space at generation t+1.

4.3 PSO-GSA hybrid algorithm

The PSO-GSA hybrid algorithm combines the individual
optimization capability of PSO with the local search ability of
GSA such as the formulas 33, 34. The improved convergence of
PSO-GSA surpasses that of standalone PSO and GSA.

vt+1i � wvti + c1 × rand × ati + c2 × rand × gbest − xt
i( ) (33)

xt+1
i � xt

i + vt+1i (34)

Initially, each particle is considered to have a candidate
solution. After initialization, the gravitational force,
gravitational constant, and resultant force between particles
are calculated. During the iteration process, the algorithm
updates to the current best solution, computes the velocity of

FIGURE 2
Comparison of convergence speed of different functions.
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particles for the (n+1)-th generation, and finally updates the
positions of the particles.

The improved convergence of PSO-GSA is superior to that of
PSO and GSA, as shown in Figure 2.

4.4 The Flowchart of the
PSO-GSA Algorithm.

The flow chart of the PSO-GSA algorithm is shown
in Figure 3.

5 Case analysis

5.1 Case parameters

Simulations were conducted on the IEEE 33-node distribution
network using Matlab 2021a software. The system’s base voltage is
12.66 kV, and the maximum load is 3.715 MW. To provide reserve
capacity for photovoltaic integration at system nodes, the upper limit
of node voltage is set to 1.05, and the lower limit is set to 0.95.
Photovoltaic panels are integrated at nodes 9 and 28, while an electric
vehicle charging station is added at node 20, as illustrated in Figure 4.

Monte Carlo simulations were employed to model the starting
density and charging power of electric vehicles, with a total of
2000 vehicles. The simulation results are presented in Appendix
Figure A1 and Figure A2.

This study focuses primarily on the impact of the fixed and
mobile energy storage access points and capacities on the integration
of photovoltaics. The basic information for both fixed and mobile
energy storage is as follows: the energy storage maintenance
coefficient is 0.02; the unit capacity investment cost is
1000 CNY/KW; the discount rate is 0.08; the service life is
20 years. For mobile energy storage, the cost per kilometer varies
based on the distance traveled each time, and here it is calculated at a
monthly cost of 3,000 Yuan. The energy storage electricity prices are
0.31 CNY/kWh from 0:00 to 8:00, 0.84 CNY/kWh from 9:00 to 11:
00, 0.31 CNY/kWh from 12:00 to 13:00, 0.84 CNY/kWh from 14:
00 to 21:00, and 0.31 CNY/kWh from 22:00 to 24:00.

To achieve coordinated optimization of fixed and mobile energy
storage for enhancing the distribution network’s consumption capacity,
a PSO-GSA hybrid algorithm is applied to both the upper-layer multi-
energy storage optimization configuration and the lower-layer energy
storage optimization scheduling. The fixed energy storage locations
range from node 2 to 33, with capacities from 0.5 MW to 1MW. The
access nodes for mobile energy storage range from node 2 to 33
(assuming node 1 is the reference node), with capacities from
0.4 MW to 0.9 MW. Fixed energy storage charges during off-peak
hours or when photovoltaic energy cannot be accommodated and
discharges during peak electricity demand. In contrast, mobile energy
storage offersmore flexible charge and discharge regulation, responding
dynamically to real-time situations in case of emergencies or when fixed
energy storage cannot effectively regulate. The PSO-GSA hybrid
algorithm is applied to both upper and lower layers with
50 particles each, 50 iterations, an individual learning factor of 0.5,
and a global learning factor of 1.5.

FIGURE 3
Algorithm flowchart.

FIGURE 4
IEEE 33 node distribution network.

Frontiers in Energy Research frontiersin.org07

Feng et al. 10.3389/fenrg.2024.1351324

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1351324


5.2 Optimization result analysis

Firstly, without the addition of any energy storage, gradually
increasing photovoltaics until the voltage exceeds the limit at nodes
9 or 28, marks themaximum photovoltaic capacity that the distribution
network can bear. The maximum capacity is determined to be 2.9 MW.

Considering the future large-scale integration of photovoltaics and
the transition of photovoltaic energy from the demand side to the
supply side, there may be reverse power flows. In such scenarios, energy
storage can be flexibly adjusted to enhance photovoltaic energy
integration, reduce the risk of voltage exceeding limits, and improve
the stability of the power system. When there is a sudden increase in
photovoltaics and fixed energy storage devices cannot regulate
effectively, flexible adjustments can be made using mobile energy
storage. The following case considers an extreme photovoltaic
output scenario of 2.9 MW and a charging station output of 0.6 MW.

To validate the effectiveness of the proposed model and method, a
comparison is made across four different scenarios. Scenario One:
integration of photovoltaics without energy storage; Scenario Two:
integration of photovoltaics with optimized configuration of fixed
energy storage; Scenario Three: integration of photovoltaics with
coordinated optimization of fixed and mobile energy storage; Scenario
Four: integration of photovoltaics, electric vehicle charging station, and
coordinated optimization of fixed and mobile energy storage. The
analysis includes voltage offset, multi-energy storage operating costs,
and on-site photovoltaic integration rate, as shown in Table 4-1.

According to Table 1, compared to Scenario One, Scenario Two,
which adds fixed energy storage, reduces the voltage offset by
0.0010 and increases the on-site photovoltaic integration rate by
3.01%. Scenario Three, with the addition of both fixed and mobile
energy storage, reduces the voltage offset by 0.0018 and increases the
on-site photovoltaic integration rate by 5.77% compared to Scenario
One. In Scenario Four, with the addition of an electric vehicle charging
station load, the voltage offset is 0.0033, the on-site photovoltaic
integration rate is 71.39%. Compared to Scenario One, the voltage
offset increases by 0.1638, and the curtailment rate decreases by
0.8081%. These results indicate that fixed energy storage adjustment
has limitations, and through coordinated optimization of fixed and
mobile energy storage, the on-site photovoltaic integration can be
increased, and voltage offset can be reduced.

To further illustrate the improvement in power grid stability
through the coordinated optimization of fixed and mobile energy
storage, a comparative analysis is conducted among Scenario One,
Scenario Two, and Scenario Three.

As shown in Figure 5, Figure 6, and Figure 7, in extreme
photovoltaic Scenario One, voltage exceeds the limit at nodes
9 and 28 when photovoltaics are added. From the node voltage
diagram in Scenario Two, it is evident that by adding fixed energy
storage, only node 9 experiences a voltage limit exceedance, and the
degree of voltage offset is smaller compared to Scenario One. The
node voltage diagram in Scenario Three indicates that through the
coordinated action of fixed and mobile energy storage, all nodes are
within the range of 0.95 p. u. to 1.05 p. u., demonstrating the efficient
synergy between fixed and mobile energy storage. This synergy can
significantly enhance the capacity for photovoltaic integration.

As shown in Figure 8, for the charge and discharge strategy of
fixed energy storage, during 3:00–7:00 when the grid load is relatively
low, the energy storage system remains in the charging state. During
10:00–14:00 when the load is high and there is sufficient photovoltaic
output, fixed energy storage discharges at a lower power. From 19:
00 to 22:00, when the load is high, fixed energy storage discharges, and

TABLE 1 Energy storage parameters.

Scenes Fixed energy storage,
mobile energy
storage access

location

Fixed energy storage,
mobile energy storage
access capacity/MW

Total cost of energy
storage operation/ten

thousand yuan

Voltage
offset

Photovoltaic local
consumption

rate (%)

Scene 1 - - 0 0.0082 64.39

- -

Scene 2 27 0.9849 317.07 0.0072 67.40

- -

Scene 3 29 0.7339 421.94 0.0064 70.16

22 0.6096

Scene 4 27 0.7070 419.76 0.0033 71.39

31 0.6265

FIGURE 5
Scene 1 target node voltage.
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when fixed energy storage cannot meet the load requirements,
coordinated operation with mobile energy storage is employed to
jointly provide power support to the grid.

As illustrated in Figure 9, due to the uncertainty of photovoltaic
output, there are two charging methods for the charge and discharge
strategy of mobile energy storage: one is during 3:00–7:00 when the
electricity price is lower, mobile energy storage utilizes grid
electricity for charging; the other is during 14:00–16:00 when the
load is low and photovoltaics cannot fully integrate, mobile energy
storage is charged at the access node. During peak electricity
demand periods at 10:00–14:00 and 19:00–22:00, if fixed energy
storage cannot effectively regulate the grid voltage, coordinated
discharge of mobile and fixed energy storage is implemented to
maintain the stable operation of the power system.

6 Conclusion

Energy storage, due to its flexible output and dynamic
adjustment characteristics, can provide rich elastic support for
the grid, facilitating the efficient integration of large-scale
distributed new energy sources and ensuring the stable operation
of the grid. This paper proposes a multi-energy storage coordinated
optimization strategy that takes into account voltage offset. Initially,
a two-layer model is established around the optimal operation cost
of Mobile Energy Storage System and Fixed Energy Storage System,
as well as minimizing the grid voltage offset. The model is solved and
validated using the PSO-GSA algorithm in the IEEE 33-node
distribution system, leading to the following conclusions.

(1) In extreme photovoltaic scenarios, based on predicted load
data, using the objectives of minimizing operating costs and

FIGURE 6
Scene 2 target node voltage.

FIGURE 7
Scene 3 target node voltage.

FIGURE 8
Charging and discharging strategy for stationary energy storage
in Scenario 3.

FIGURE 9
Mobile energy storage charging and discharging strategy in
scenario 3.
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minimizing voltage offset, BESS and FESS are optimized in
terms of configuration and dispatch. Suitable parameters for
energy storage are selected, and mobile energy storage is
dispatched to different nodes to provide charging and
discharging services. By comparing fixed energy storage
with the coordinated operation of fixed and mobile energy
storage, and optimizing the configuration and operational
strategies of energy storage, the results show that coordinated
operation of fixed and mobile energy storage can improve on-
site photovoltaic integration while reducing grid
voltage offset.

(2) Guiding energy storage systems to participate in the optimal
operation of distribution networks through time-of-use
electricity prices and time-of-use loads. The strategy
involves charging during low demand and discharging
during high demand, balancing the demands of both the
grid side and the load side. This approach reduces
curtailment, minimizes the impact of distributed energy
source output instability on the grid, and equips the
distribution network with sufficient flexibility to adapt to
peak-valley differences, fluctuations, and the growing
normality of daily loads.

(3) The mathematical model presented in this paper exhibits
multi-dimensional non-linear characteristics. The PSO-GSA
hybrid algorithm is employed for model solving, combining
the individual optimization of particle swarm algorithm with
the local search ability of gravitational search algorithm. This
hybrid approach offers better convergence for solving multi-
dimensional non-linear problems.

The optimization strategies mentioned in this paper do not
consider the impact of different seasons on photovoltaic output, the
influence of mobile energy storage routes, and traffic congestion. In
future work, these factors, along with the consideration of the impact
of different seasons on photovoltaic output, traffic congestion, and
the use of smart switches, could be incorporated into the analysis.
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Nomenclature

Indices

NI Equipment type I

CI Investment cost of equipment type I

Closs
I

Daily operational maintenance cost of equipment I

G0 Initial value

Pline
t

Power purchased from the grid at time t

wline
t Electricity price at time t

CFUEL Unit distance cost

Parameters

DPV Photovoltaic penetration rate

FMAX Maximum photovoltaic output power

FL,MAX Maximum load output power

PPV ,fact ,t Actual generation of photovoltaics at time t

PLOAD,T Distribution network load during the photovoltaic generation
period at time t

PESS,t Load for energy storage charging during the photovoltaic
generation period at time t

PMES
i,t Injected power at node i by mobile energy storage at time t

EMES
t State of charge of mobile energy storage at time t

E MES
min , E

MES
max Maximum and minimum values of the state of charge of mobile

energy storage

EMES
0 , EMES

T State of charge of mobile energy storage

f 1 Equipment investment costs

f 2 Equipment operating costs

f 3 Grid power purchase cost

f 4 Cost of mobile energy storage migration

Ps Photovoltaic output power

PN Rated power of mobile energy storage

Qs,i Reactive power output at node i due to the power source

QL,i Reactive power output of the load at node i

Cf irst Equipment investment cost

Q Capital recovery factor

Variables

φ On-site absorption rate of photovoltaic power

α, β Shape parameters of the Beta distribution

r Actual solar irradiance during a specific time period

rmax Maximum solar irradiance during that time period

A Photovoltaic panel area

η Photovoltaic conversion efficiency

ηc Charging efficiency of energy storage

ηd Discharging efficiency of energy storage

w1、w2、w3、w4 Random number between 0 and 1

q Annual interest rate

Z Cost of repairing equipment damage

ODISTANCE Distance traveled by the energy storage vehicle

PES,j
min Lower limit of the charging or discharging power for the jth

energy storage unit

PES,j(t) Charging or discharging power of the jth energy storage unit at
time t

PES,j
max Upper limit of the charging or discharging power for the jth

energy storage unit

SOCj(t) State of charge of the energy storage at time t

Pt,buy Electricity purchasing power

ΔUi,t Voltage deviation at time t

Ui,t Voltage at node i at time t

Ui,min , Ui,max Upper and lower limits of node i

Ppv,min Minimum output of photovoltaic power

Pt
pv Photovoltaic power output at time t

Ppv,max Maximum output of photovoltaic or wind power

Ps,i Active power output at node i due to the power source

PL,i Active power output of the load at node i

Ui Voltage at node i

Uj Voltage at node j

vti Velocity of the i th particle at generation t

pbestti The best position of the particle at generation t

xti The position of the particle at generation t

gbest The best solution

w Weighted function

c1 Weighting factor

c2 Weighting factor

ξ A constant

∂ Descent coefficient

wvti Exploration ability of the particle

xt+1i Position of particle i at generation t+1

Fd
ij(t) Gravitational force of particle i on particle j in the d-dimensional

space at the tth iteration

G(t) Value of universal gravitational force at the tth iteration

Mpi(t) Active gravitational mass

Maj(t) Passive gravitational mass

Rij(t) Euclidean distance between i and j

xdj (t) Position of particle j in the d-dimensional space at the tth
generation

xdi (t) Position of particle i in the d-dimensional space at the tth
generation
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Fd
i (t) Total force experienced by individual i in the d-dimensional

space at the tth iteration

adi (t) Equation for the acceleration of individual i in the
d-dimensional space

Mi(t) Mass of individual i at generation t

vdi (t + 1) Velocity of particle i in the d-dimensional space at
generation t+1

xdi (t + 1) Position of particle i in the d-dimensional space at
generation t+1
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