79,526 research outputs found

    Microwave Nanotube Transistor Operation at High Bias

    Full text link
    We measure the small signal, 1 GHz source-drain dynamical conductance of a back-gated single-walled carbon nanotube field effect transistor at both low and high dc bias voltages. At all bias voltages, the intrinsic device dynamical conductance at 1 GHz is identical to the low frequency dynamical conductance, consistent with the prediction of a cutoff frequency much higher than 1 GHz. This work represents a significant step towards a full characterization of a nanotube transistor for RF and microwave amplifiers.Comment: 3 pages, 4 figure

    Design of a 2.4 GHz High-Performance Up-Conversion Mixer with Current Mirror Topology

    Get PDF
    In this paper, a low voltage low power up-conversion mixer, designed in a Chartered 0.18 μm RFCMOS technology, is proposed to realize the transmitter front-end in the frequency band of 2.4 GHz. The up-conversion mixer uses the current mirror topology and current-bleeding technique in both the driver and switching stages with a simple degeneration resistor. The proposed mixer converts an input of 100 MHz intermediate frequency (IF) signal to an output of 2.4 GHz radio frequency (RF) signal, with a local oscillator (LO) power of 2 dBm at 2.3 GHz. A comparison with conventional CMOS up-conversion mixer shows that this mixer has advantages of low voltage, low power consumption and high-performance. The post-layout simulation results demonstrate that at 2.4 GHz, the circuit has a conversion gain of 7.1 dB, an input-referred third-order intercept point (IIP3) of 7.3 dBm and a noise figure of 11.9 dB, while drawing only 3.8 mA for the mixer core under a supply voltage of 1.2 V. The chip area including testing pads is only 0.62×0.65 mm2

    Robust variable selection in partially varying coefficient single-index model

    Get PDF
    By combining basis function approximations and smoothly clipped absolute deviation (SCAD) penalty, this paper proposes a robust variable selection procedure for a partially varying coefficient single-index model based on modal regression. The proposed procedure simultaneously selects significant variables in the parametric components and the nonparametric components. With appropriate selection of the tuning parameters, we establish the theoretical properties of our procedure, including consistency in variable selection and the oracle property in estimation. Furthermore, we also discuss the bandwidth selection and propose a modified expectation-maximization (EM)-type algorithm for the proposed estimation procedure. The finite sample properties of the proposed estimators are illustrated by some simulation examples.The research of Zhu is partially supported by National Natural Science Foundation of China (NNSFC) under Grants 71171075, 71221001 and 71031004. The research of Yu is supported by NNSFC under Grant 11261048

    Northern peatland carbon stocks and dynamics: a review

    Get PDF
    Peatlands contain a large belowground carbon (C) stock in the biosphere, and their dynamics have important implications for the global carbon cycle. However, there are still large uncertainties in C stock estimates and poor understanding of C dynamics across timescales. Here I review different approaches and associated uncertainties of C stock estimates in the literature, and on the basis of the literature review my best estimate of C stocks and uncertainty is 500 ± 100 (approximate range) gigatons of C (Gt C) in northern peatlands. The greatest source of uncertainty for all the approaches is the lack or insufficient representation of data, including depth, bulk density and carbon accumulation data, especially from the world's large peatlands. Several ways to improve estimates of peat carbon stocks are also discussed in this paper, including the estimates of C stocks by regions and further utilizations of widely available basal peat ages. <br><br> Changes in peatland carbon stocks over time, estimated using <i>Sphagnum</i> (peat moss) spore data and down-core peat accumulation records, show different patterns during the Holocene, and I argue that spore-based approach underestimates the abundance of peatlands in their early histories. Considering long-term peat decomposition using peat accumulation data allows estimates of net carbon sequestration rates by peatlands, or net (ecosystem) carbon balance (NECB), which indicates more than half of peat carbon (> 270 Gt C) was sequestrated before 7000 yr ago during the Holocene. Contemporary carbon flux studies at 5 peatland sites show much larger NECB during the last decade (32 ± 7.8 (S.E.) g C m<sup>−2</sup> yr<sup>–1</sup>) than during the last 7000 yr (∼ 11 g C m<sup>−2</sup> yr<sup>–1</sup>), as modeled from peat records across northern peatlands. This discrepancy highlights the urgent need for carbon accumulation data and process understanding, especially at decadal and centennial timescales, that would bridge current knowledge gaps and facilitate comparisons of NECB across all timescales

    Moduli spaces of symmetric cubic fourfolds and locally symmetric varieties

    Get PDF
    In this paper we realize the moduli spaces of cubic fourfolds with specified automorphism groups as arithmetic quotients of complex hyperbolic balls or type IV symmetric domains, and study their compactifications. Our results mainly depend on the well-known works about moduli space of cubic fourfolds, including the global Torelli theorem proved by Voisin ([Voi86]) and the characterization of the image of the period map, which is given by Laza ([Laz09, Laz10]) and Looijenga ([Loo09]) independently. The key input for our study of compactifications is the functoriality of Looijenga compactifications, which we formulate in the appendix (section A). The appendix can also be applied to study the moduli spaces of singular K3 surfaces and cubic fourfolds, which will appear in a subsequent paper
    corecore