597 research outputs found

    Development and Characterization of Microsatellite Loci for Ficus hirta (Moraceae)

    Get PDF
    Microsatellite primers were developed to investigate population genetic structure in Ficus hirta (Moraceae). Sixteen microsatellite primers were developed and optimized for F. hirta using Illumina paired-end sequencing of pre-receptive and receptive developmental-phase female flowers. Out of 16 primers, nine were found to be polymorphic in four populations of F. hirta. Alleles per locus ranged from two to 15 across the 94 F. hirta individuals, while within-population observed and expected heterozygosity per locus ranged from 0.000 to 0.955 and from 0.000 to 0.882, respectively. In addition, the 16 primers were tested in 29 additional Ficus species, with all found to amplify in at least 11 of these species and with most amplifying in a majority of the species. This set of microsatellite primers is the first specifically developed for F. hirta and will facilitate studies of genetic diversity within and genetic differentiation among populations of Ficus species

    STUDY ON PERMEABILITY AND ELECTRICAL RESISTIVITY OF RED CLAY CONTAMINATED BY CU2+

    Get PDF
    In order to study the permeability characteristics of heavy metal ions contaminated red clay and explore the rapid detection of permeability of heavy metal contaminated red clay. Through variable-head permeability test and electrical resistivity test (different voltages and methods), the effects of Cu2+ concentration and initial water content on hydraulic conductivity characteristic and resistivity of contaminated red clay was systematically investigated. The relationship between permeability characteristic and electrical resistivity was further explored by taking Cu2+ concentration and moisture content as the intermediate variable. The obtained results indicate that the different voltage has no obvious effect on the resistivity of the samples. The four-phase electrode method is more accurate than the two-phase electrode method. With increasing Cu2+ concentrations the hydraulic conductivity of specimens increases, however the permeability coefficient of contaminated soil decreases with increasing initial water content. In the resistivity test, with increasing of Cu2+ concentrations and water content, the resistivity of samples presented a downward trend, which is decreased sharply at first and then tended to be gentle. The relationship between hydraulic conductivity and resistivity of contaminated soil showed a good fitting curve no matter in different Cu2+ concentration or in different water content, but the fitting curves of them presented opposite trend

    Case report: Giant cystic ileal gastrointestinal stromal tumor with an atypical intratumoral abscess

    Get PDF
    BackgroundGastrointestinal stromal tumors (GISTs) are typically solid, sometimes with small cystic areas, but rarely manifest as predominantly cystic neoplasms. In addition, cystic intestinal GISTs with intratumoral abscess formation are rare.Case presentationWe present the case of a 49-year-old male patient with a history of frequent and urgent urination for 2 weeks. Radiologic studies revealed a large cystic mass in the lower abdomen. The patient underwent abdominal laparotomy, which revealed a large cystic mass arising from the distal ileum invading the sigmoid mesocolon and apex vesicae. Partial resection of the ileum along with the tumor and the adjacent bladder was performed. Macroscopic examination revealed that the cystic mass contained a large amount of foul-smelling pus and a tumor-bowel fistula. The final pathology revealed an abdominal stromal tumor. Postoperative recovery was uneventful, and adjuvant imatinib mesylate 400 mg was administered daily. No tumor recurrence or metastasis was observed during the 9-month follow-up period.ConclusionFingings of a cystic tumor in the abdomen should raise concern for cystic GISTs. This case report reviews a rare presentation of an ileal giant cystic GIST with atypical intratumoral abscess formation. Complete surgical resection and adjuvant imatinib is still the mainstay treatment for GISTs

    Процессы структурообразования и свойства бетонов на органогидравлических вяжущих

    Get PDF
    The article addresses the issues of structure formation of road composite materials containing hydraulic (рortland cement) and organic (bitumen) binders. It has been determined that organic and hydraulic binders, being thermodynamically incompatible, are capable of interaction and complement each other. Structure formation processes are associated with interphase transition layers interaction mechanism and the direct formation of phase contacts with cement crystallohydrates. The interphase boundary is diffuse and is established through interphase transition layers. The emergence of interfacial layers is thermodynamically advantageous, since it contributes to a decrease in Gibbs free energy and does not contradict modern concepts of solid state physics. It was established that with cement content of about 30 % of complex bitumen-cement binder volume, there will appear (nucleate) phase contacts that will prevail in the binder structure when the cement content is more than 60 %. In the case phase contacts prevail, concrete will demonstrate significant strength at high temperatures, but low temperature and fatigue crack resistance, which will lead to their durability loss. The cement content of 30–40 % of the total complex binder can be considered optimal

    Engineering Superfluidity in Electron-Hole Double Layers

    Full text link
    We show that band-structure effects are likely to prevent superfluidity in semiconductor electron-hole double-layer systems. We suggest the possibility that superfluidity could be realized by the application of uniaxial pressure perpendicular to the electron and hole layers.Comment: 4 pages, includes 3 figure
    corecore