4 research outputs found

    Local delivery of novel MRTF/SRF inhibitors prevents scar tissue formation in a preclinical model of fibrosis

    Get PDF
    The myocardin-related transcription factor/serum response factor (MRTF/SRF) pathway represents a promising therapeutic target to prevent fibrosis. We have tested the effects of new pharmacological inhibitors of MRTF/SRF signalling in a preclinical model of fibrosis. CCG-222740, a novel MRTF/SRF inhibitor, markedly decreased SRF reporter gene activity and showed a greater inhibitory effect on MRTF/SRF target genes than the previously described MRTF-A inhibitor CCG-203971. CCG-222740 was also five times more potent, with an IC50 of 5 μM, in a fibroblast-mediated collagen contraction assay, was less cytotoxic, and a more potent inhibitor of alpha-smooth muscle actin protein expression than CCG-203971. Local delivery of CCG-222740 and CCG-203971 in a validated and clinically relevant rabbit model of scar tissue formation after glaucoma filtration surgery increased the long-term success of the surgery by 67% (P < 0.0005) and 33% (P < 0.01), respectively, and significantly decreased fibrosis and scarring histologically. Unlike mitomycin-C, neither CCG-222740 nor CCG-203971 caused any detectable epithelial toxicity or systemic side effects with very low drug levels measured in the aqueous, vitreous, and serum. We conclude that inhibitors of MRTF/SRF-regulated gene transcription such as CCG-222740, potentially represent a new therapeutic strategy to prevent scar tissue formation in the eye and other tissues

    In vitro and in vivo delivery of a sustained release nanocarrier-based formulation of an MRTF/SRF inhibitor in conjunctival fibrosis

    Get PDF
    Abstract Background Sustained drug delivery is a large unmet clinical need in glaucoma. Here, we incorporated a Myocardin-Related Transcription Factor/Serum Response Factor inhibitor, CCG-222740, into slow release large unilamellar vesicles derived from the liposomes DOTMA (1,2-di-O-octadecenyl-3-trimethylammonium propane) and DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine), and tested their effects in vitro and in vivo. Results The vesicles were spherical particles of around 130 nm and were strongly cationic. A large amount of inhibitor could be incorporated into the vesicles. We showed that the nanocarrier CCG-222740 formulation gradually released the inhibitor over 14 days using high performance liquid chromatography. Nanocarrier CCG-222740 significantly decreased ACTA2 gene expression and was not cytotoxic in human conjunctival fibroblasts. In vivo, nanocarrier CCG-222740 doubled the bleb survival from 11.0 ± 0.6 days to 22.0 ± 1.3 days (p = 0.001), decreased conjunctival scarring and did not have any local or systemic adverse effects in a rabbit model of glaucoma filtration surgery. Conclusions Our study demonstrates proof-of-concept that a nanocarrier-based formulation efficiently achieves a sustained release of a Myocardin-Related Transcription Factor/Serum Response Factor inhibitor and prevents conjunctival fibrosis in an established rabbit model of glaucoma filtration surgery.https://deepblue.lib.umich.edu/bitstream/2027.42/146540/1/12951_2018_Article_425.pd
    corecore