11,136 research outputs found

    How sonoporation disrupts cellular structural integrity: morphological and cytoskeletal observations

    Get PDF
    Posters: no. 1Control ID: 1672429OBJECTIVES: In considering sonoporation for drug delivery applications, it is essential to understand how living cells respond to this puncturing force. Here we seek to investigate the effects of sonoporation on cellular structural integrity. We hypothesize that the membrane morphology and cytoskeletal behavior of sonoporated cells under recovery would inherently differ from that of normal viable cells. METHODS: A customized and calibrated exposure platform was developed for this work, and the ZR-75-30 breast carcinoma cells were used as the cell model. The cells were exposed to either single or multiple pulses of 1 MHz ultrasound (pulse length: 30 or 100 cycles; PRF: 1kHz; duration: up to 60s) with 0.45 MPa spatial-averaged peak negative pressure and in the presence of lipid-shelled microbubbles. Confocal microscopy was used to examine insitu the structural integrity of sonoporated cells (identified as ones with exogenous fluorescent marker internalization). For investigations on membrane morphology, FM 4-64 was used as the membrane dye (red), and calcein was used as the sonoporation marker (green); for studies on cytoskeletal behavior, CellLight (green) and propidium iodide (red) were used to respectively label actin filaments and sonoporated cells. Observation started from before exposure to up to 2 h after exposure, and confocal images were acquired at real-time frame rates. Cellular structural features and their temporal kinetics were quantitatively analyzed to assess the consistency of trends amongst a group of cells. RESULTS: Sonoporated cells exhibited membrane shrinkage (decreased by 61% in a cell’s cross-sectional area) and intracellular lipid accumulation (381% increase compared to control) over a 2 h period. The morphological repression of sonoporated cells was also found to correspond with post-sonoporation cytoskeletal processes: actin depolymerization was observed as soon as pores were induced on the membrane. These results show that cellular structural integrity is indeed disrupted over the course of sonoporation. CONCLUSIONS: Our investigation shows that the biophysical impact of sonoporation is by no means limited to the induction of membrane pores: e.g. structural integrity is concomitantly affected in the process. This prompts the need for further fundamental studies to unravel the complex sequence of biological events involved in sonoporation.postprin

    Cartilage stem/progenitor cells are activated in osteoarthritis via interleukin-1β/nerve growth factor signaling

    Get PDF
    Introduction: Interleukin-1β (IL-1β) and nerve growth factor (NGF) are key regulators in the pathogenesis of inflammatory arthritis; specifically, IL-1β is involved in tissue degeneration and NGF is involved in joint pain. However, the cellular and molecular interactions between IL-1β and NGF in articular cartilage are not known. Cartilage stem/progenitor cells (CSPCs) have recently been identified in osteoarthritic (OA) cartilage on the basis of their migratory properties. Here we hypothesize that IL-1β/NGF signaling is involved in OA cartilage degeneration by targeting CSPCs. Method: NGF and NGF receptor (NGFR: TrkA and p75NTR) expression in healthy and OA human articular cartilage and isolated chondrocytes was determined by immunostaining, qRT-PCR, flow cytometry and western blot. Articular cartilage derived stem/progenitor cells were collected and identified by stem/progenitor cell characteristics. 3D-cultured CSPC pellets and cartilage explants were treated with NGF and NGF neutralizing antibody, and extracellular matrix changes were examined by sulfated glycosaminoglycan (GAG) release and MMP expression and activity. Results: Expression of NGF, TrkA and p75NTR was found to be elevated in human OA cartilage. Cellular changes upon IL-1β and/or NGF treatment were then examined. NGF mRNA and NGFR proteins levels were upregulated in cultured chondrocytes exposed to IL-1β. NGF was chemotactic for cells isolated from OA cartilage. Cells isolated on the basis of their chemotactic migration towards NGF demonstrated stem/progenitor cell characteristics, including colony-forming ability, multi-lineage differentiation potential, and stem cell surface markers. The effects of NGF perturbation in cartilage explants and 3D-cultured CSPCs were next analyzed. NGF treatment resulted in extracellular matrix catabolism indicated by increased sGAG release and MMP expression and activity; conversely, treatment with NGF neutralizing antibody inhibited increased MMP levels, and enhanced tissue inhibitor of matrix metalloprotease-1 (TIMP1) expression in OA cartilage explants. NGF blockade with neutralizing antibody also affected cartilage matrix remodeling in 3D-CSPC pellet cultures. Conclusion: Our results strongly suggest that NGF signaling is a contributing factor in articular cartilage degeneration in OA, which likely targets a specific subpopulation of progenitor cells, the CSPCs, affecting their migratory and matrix remodeling activities. These findings provide novel cellular/signaling therapeutic targets in osteoarthritic cartilage

    Study on administration of 1,5-anhydro-D-fructose in C57BL/6J mice challenged with high-fat diet

    Get PDF
    1,5-Anhydro-D-fructose (AF) is a mono-saccharide directly formed from starch and glycogen by the action of α-1,4-glucan lyase (EC 4.2.2.13). Our previous study has indicated that AF increases glucose tolerance and insulin secretion in NMRI mice after administration through a gastric gavage in a single dose at 150 mg per mouse. In this study, we used high-fat feeding of C57BL/6J mice to examine the influence of long-term administration of AF on glucose-stimulated insulin secretion in vivo and in vitro. We found that 8-weeks of high-fat feeding increased body weight, fasting blood glucose and insulin levels in C57BL/6J mice when compared to mice fed normal diet. Impaired glucose tolerance was also observed in mice receiving 8-weeks of high-fat diet. In contrast, AF (1.5 g/kg/day), administered through drinking water for 8-weeks, did not affect body weight or food and water intake in mice fed either the high-fat or normal diet. There was no difference in basal blood glucose or insulin levels between AF-treated and control group. Oral glucose tolerance test (OGTT) showed that AF did not affect glucose-stimulated insulin secretion in mice. In in vitro studies with isolated islets, AF did not influence glucose-stimulated insulin secretion in mice receiving either high-fat or normal diet. We therefore conclude that when given through drinking water for 8 weeks at 1.5 g/kg/day, AF has no effect on glucose-stimulated insulin secretion in C57BL/6J mice challenged with a high-fat diet

    Phylogeny of Prokaryotes and Chloroplasts Revealed by a Simple Composition Approach on All Protein Sequences from Complete Genomes Without Sequence Alignment

    Get PDF
    The complete genomes of living organisms have provided much information on their phylogenetic relationships. Similarly, the complete genomes of chloroplasts have helped to resolve the evolution of this organelle in photosynthetic eukaryotes. In this paper we propose an alternative method of phylogenetic analysis using compositional statistics for all protein sequences from complete genomes. This new method is conceptually simpler than and computationally as fast as the one proposed by Qi et al. (2004b) and Chu et al. (2004). The same data sets used in Qi et al. (2004b) and Chu et al. (2004) are analyzed using the new method. Our distance-based phylogenic tree of the 109 prokaryotes and eukaryotes agrees with the biologists tree of life based on 16S rRNA comparison in a predominant majority of basic branching and most lower taxa. Our phylogenetic analysis also shows that the chloroplast genomes are separated to two major clades corresponding to chlorophytes s.l. and rhodophytes s.l. The interrelationships among the chloroplasts are largely in agreement with the current understanding on chloroplast evolution

    Does bariatric surgery prior to total hip or knee arthroplasty reduce post-operative complications and improve clinical outcomes for obese patients? Systematic review and meta-analysis.

    Get PDF
    AIMS: Our aim was to determine whether, based on the current literature, bariatric surgery prior to total hip (THA) or total knee arthroplasty (TKA) reduces the complication rates and improves the outcome following arthroplasty in obese patients. METHODS: A systematic literature search was undertaken of published and unpublished databases on the 5 November 2015. All papers reporting studies comparing obese patients who had undergone bariatric surgery prior to arthroplasty, or not, were included. Each study was assessed using the Downs and Black appraisal tool. A meta-analysis of risk ratios (RR) and 95% confidence intervals (CI) was performed to determine the incidence of complications including wound infection, deep vein thrombosis (DVT), pulmonary embolism (PE), revision surgery and mortality. RESULTS: From 156 potential studies, five were considered to be eligible for inclusion in the study. A total of 23 348 patients (657 who had undergone bariatric surgery, 22 691 who had not) were analysed. The evidence-base was moderate in quality. There was no statistically significant difference in outcomes such as superficial wound infection (relative risk (RR) 1.88; 95% confidence interval (CI) 0.95 to 0.37), deep wound infection (RR 1.04; 95% CI 0.65 to 1.66), DVT (RR 0.57; 95% CI 0.13 to 2.44), PE (RR 0.51; 95% CI 0.03 to 8.26), revision surgery (RR 1.24; 95% CI 0.75 to 2.05) or mortality (RR 1.25; 95% CI 0.16 to 9.89) between the two groups. CONCLUSION: For most peri-operative outcomes, bariatric surgery prior to THA or TKA does not significantly reduce the complication rates or improve the clinical outcome. This study questions the previous belief that bariatric surgery prior to arthroplasty may improve the clinical outcomes for patients who are obese or morbidly obese. This finding is based on moderate quality evidence. Cite this article: Bone Joint J 2016;98-B:1160-6

    Quantifying Robotic Swarm Coverage

    Full text link
    In the field of swarm robotics, the design and implementation of spatial density control laws has received much attention, with less emphasis being placed on performance evaluation. This work fills that gap by introducing an error metric that provides a quantitative measure of coverage for use with any control scheme. The proposed error metric is continuously sensitive to changes in the swarm distribution, unlike commonly used discretization methods. We analyze the theoretical and computational properties of the error metric and propose two benchmarks to which error metric values can be compared. The first uses the realizable extrema of the error metric to compute the relative error of an observed swarm distribution. We also show that the error metric extrema can be used to help choose the swarm size and effective radius of each robot required to achieve a desired level of coverage. The second benchmark compares the observed distribution of error metric values to the probability density function of the error metric when robot positions are randomly sampled from the target distribution. We demonstrate the utility of this benchmark in assessing the performance of stochastic control algorithms. We prove that the error metric obeys a central limit theorem, develop a streamlined method for performing computations, and place the standard statistical tests used here on a firm theoretical footing. We provide rigorous theoretical development, computational methodologies, numerical examples, and MATLAB code for both benchmarks.Comment: To appear in Springer series Lecture Notes in Electrical Engineering (LNEE). This book contribution is an extension of our ICINCO 2018 conference paper arXiv:1806.02488. 27 pages, 8 figures, 2 table

    Isolated Hepatic Tuberculosis Presenting as Cystic-Like and Tumour-Like Mass Lesions

    Get PDF
    Hepatic tuberculosis is a rare manifestation of extra-pulmonary tuberculosis. Hepatic tuberculous lesions are especially mimicking tumour-like mass or cystic lesions in the liver and so can be misdiagnosed with several diseases. Histopathological examination of the specimen is essential in the diagnosis for hepatic tuberculosis. In this report, two cases with hepatic tuberculosis having cystic solid mass and abscess liver lesions are described

    Bond-length dependence of charge-transfer excitations and stretch phonon modes in perovskite ruthenates: Evidence of strong p – d hybridization effects

    Get PDF
    We reported the optical conductivity spectra of the Ruddlesden-Popper series ruthenates, i.e., Srn+1RunO3n+1 and Can+1RunO3n+1, where n=1, 2, and `. Among various optical transitions, we investigated two Ru-O related modes, i.e., the charge-transfer excitation and the transverse stretching phonon. We found that their frequency shifts are not much affected by a structural dimensionality, but are closely related to the Ru-O bond length. Through the quantitative analysis of the charge-transfer excitation energy, we could demonstrate that the p–d hybridization should play an important role in determining their electronic structure. In addition, we discussed how the electronic excitation could contribute the lattice dynamics in the metallic ruthenate

    Sorting of chromosomes by magnetic separation

    Get PDF
    Chromosomes were isolated from Chinese hamster x human hybrid cell lines containing four and nine human chromosomes. Human genomic DNA was biotinylated by nick translation and used to label the human chromosomes by in situ hybridization in suspension. Streptavidin was covalently coupled to the surface of magnetic beads and these were incubated with the hybridized chromosomes. The human chromosomes were bound to the magnetic beads through the strong biotin-streptavidin complex and then rapidly separated from nonlabeled Chinese hamster chromosomes by a simple permanent magnet. The hybridization was visualized by additional binding of avidin-FITC (fluorescein) to the unoccupied biotinylated human DNA bound to the human chromosomes. After magnetic separation, up to 98% of the individual chromosomes attached to magnetic beads were classified as human chromosomes by fluorescence microscopy
    corecore