2,008 research outputs found
Decoherence in circuits of small Josephson junctions
We discuss dephasing by the dissipative electromagnetic environment and by
measurement in circuits consisting of small Josephson junctions. We present
quantitative estimates and determine in which case the circuit might qualify as
a quantum bit. Specifically, we analyse a three junction Cooper pair pump and
propose a measurement to determine the decoherence time .Comment: 4 pages, 4 figure
Theory of photoinduced charge transfer in weakly coupled donor-acceptor conjugated polymers: application to an MEH-PPV:CN-PPV pair
In a pair of coupled donor-acceptor conjugated polymer chains, it is possible
for an exciton photoexcited on either polymer to decay into a hole in the donor
polymer's valence band and an electron in the conduction band of the acceptor
polymer. We calculate the corresponding exciton decay rate and its dependence
on inter-polymer distance. For a pair of derivatives of poly(phenylene
vinylene), PPV, specifically poly[2-methoxy, 5-(2-ethyl-hexyloxy)-1, 4
PPV], MEH-PPV, and poly(2,5-hexyloxy -phenylene cyanovinylene), CN-PPV, at a
separation of 6 \AA the characteristic decay time is 2.2 ps, whereas at 4 \AA
it is fs.Comment: 9 pages, RevTeX, 4 PS files, to be published in a special issue of
Chem. Phy
Polymorphic evolution sequence and evolutionary branching
We are interested in the study of models describing the evolution of a
polymorphic population with mutation and selection in the specific scales of
the biological framework of adaptive dynamics. The population size is assumed
to be large and the mutation rate small. We prove that under a good combination
of these two scales, the population process is approximated in the long time
scale of mutations by a Markov pure jump process describing the successive
trait equilibria of the population. This process, which generalizes the
so-called trait substitution sequence, is called polymorphic evolution
sequence. Then we introduce a scaling of the size of mutations and we study the
polymorphic evolution sequence in the limit of small mutations. From this study
in the neighborhood of evolutionary singularities, we obtain a full
mathematical justification of a heuristic criterion for the phenomenon of
evolutionary branching. To this end we finely analyze the asymptotic behavior
of 3-dimensional competitive Lotka-Volterra systems
A virtual intersubband spin-flip spin-orbit coupling induced spin relaxation in GaAs (110) quantum wells
A spin relaxation mechanism is proposed based on a second-order spin-flip
intersubband spin-orbit coupling together with the spin-conserving scattering.
The corresponding spin relaxation time is calculated via the Fermi golden rule.
It is shown that this mechanism is important in symmetric GaAs (110) quantum
wells with high impurity density. The dependences of the spin relaxation time
on electron density, temperature and well width are studied with the underlying
physics analyzed.Comment: 4+ pages, 4 figures, to be published in Solid Stat. Commu
Thermal compression of atomic hydrogen on helium surface
We describe experiments with spin-polarized atomic hydrogen gas adsorbed on
liquid He surface. The surface gas density is increased locally by
thermal compression up to cm at 110 mK. This
corresponds to the onset of quantum degeneracy with the thermal de-Broglie
wavelength being 1.5 times larger than the mean interatomic spacing. The atoms
were detected directly with a 129 GHz electron-spin resonance spectrometer
probing both the surface and the bulk gas. This, and the simultaneous
measurement of the recombination power, allowed us to make accurate studies of
the adsorption isotherm and the heat removal from the adsorbed hydrogen gas.
From the data, we estimate the thermal contact between 2D hydrogen gas and
phonons of the helium film. We analyze the limitations of the thermal
compression method and the possibility to reach the superfluid transition in 2D
hydrogen gas.Comment: 20 pages, 11 figure
Feasibility of vibration energy harvesting powered wireless tracking of falcons in flight
The use of wireless tagging of birds has been widely used for monitoring or tracking purposes. This include over 10 thousand wireless tracking devices currently used by the UK falconers alone. However, due to the concern of not burdening the birds with a heavy battery, the existing lightweight telemetry tracking systems can only last for days, if not hours. Falcons can have top flight speeds in excess of a hundred miles an hour, which makes it a near impossible task to track a missing falcon after the battery has been depleted. This paper investigates the feasibility of incorporating a piezoelectric vibration energy harvesting system to act as a secondary power source for the wireless tracking of falcons. The ultimate aim is to both extend the primary battery life and enable periodic burst transmissions of telemetry after the depletion of the primary battery. The presented tracking and harvesting system is lightweight and has been field trialled on a gyrfalcon at the Chester Cathedral Falconry
Classification of a supersolid: Trial wavefunctions, Symmetry breakings and Excitation spectra
A state of matter is characterized by its symmetry breaking and elementary
excitations.
A supersolid is a state which breaks both translational symmetry and internal
symmetry.
Here, we review some past and recent works in phenomenological
Ginsburg-Landau theories, ground state trial wavefunctions and microscopic
numerical calculations. We also write down a new effective supersolid
Hamiltonian on a lattice.
The eigenstates of the Hamiltonian contains both the ground state
wavefunction and all the excited states (supersolidon) wavefunctions. We
contrast various kinds of supersolids in both continuous systems and on
lattices, both condensed matter and cold atom systems. We provide additional
new insights in studying their order parameters, symmetry breaking patterns,
the excitation spectra and detection methods.Comment: REVTEX4, 19 pages, 3 figure
Measurement of coherent charge transfer in an adiabatic Cooper pair pump
We study adiabatic charge transfer in a superconducting Cooper pair pump,
focusing on the influence of current measurement on coherence. We investigate
the limit where the Josephson coupling energy between the various parts
of the system is small compared to the Coulomb charging energy . In this
case the charge transferred in a pumping cycle , the charge of one
Cooper pair: the main contribution is due to incoherent Cooper pair tunneling.
We are particularly interested in the quantum correction to , which is due
to coherent tunneling of pairs across the pump and which depends on the
superconducting phase difference between the electrodes: . A measurement of tends to destroy the phase
coherence. We first study an arbitrary measuring circuit and then specific
examples and show that coherent Cooper pair transfer can in principle be
detected using an inductively shunted ammeter
Macroscopic quantum superpositions in highly-excited strongly-interacting many-body systems
We demonstrate a break-down in the macroscopic (classical-like) dynamics of
wave-packets in complex microscopic and mesoscopic collisions. This break-down
manifests itself in coherent superpositions of the rotating clockwise and
anticlockwise wave-packets in the regime of strongly overlapping many-body
resonances of the highly-excited intermediate complex. These superpositions
involve many-body configurations so that their internal interactive
complexity dramatically exceeds all of those previously discussed and
experimentally realized. The interference fringes persist over a time-interval
much longer than the energy relaxation-redistribution time due to the
anomalously slow phase randomization (dephasing). Experimental verification of
the effect is proposed.Comment: Title changed, few changes in the abstract and in the main body of
the paper, and changes in the font size in the figure. Uses revTex4, 4 pages,
1 ps figur
- …