25,812 research outputs found

    On the intensity ratio variation of the Si IV 1394/1403 \r{A} lines during solar flares

    Full text link
    Context. The Si IV lines at 1394 \r{A} and 1403 \r{A} form in the solar atmosphere at a temperature of 104.8\sim10^{4.8} K. They are usually considered optically thin, but their opacity can be enhanced during solar flares. Traditionally, the intensity ratio of these lines are used as an indicator of the optical thickness. However, observations have shown a wavelength-dependent intensity ratio profile r(Δλ)r(\Delta\lambda) of the the 1394 \r{A} to 1403 \r{A} lines. Aims. We aim to study the variation of the intensity ratio profile in solar flares and the physical reasons behind it. Method. The Si IV lines and their intensity ratio profiles are calculated from the one-dimensional radiative hydrodynamics flare model with non-thermal electron heating. Result. During flares, r(Δλ)r(\Delta\lambda) is smaller than 2 at the line core but larger than 2 at the line wings. We attribute the deviation of the ratio from 2 to two effects: the resonance scattering effect and the opacity effect. Resonance scattering increases the population ratio of the upper levels of the two lines, and as a result, increases r(Δλ)r(\Delta\lambda), in all wavelengths. The opacity effect decreases r(Δλ)r(\Delta\lambda), especially at the line core where the opacity is larger. These two effects compete with each other and cause the U-shape of r(Δλ)r(\Delta\lambda).Comment: 11 pages, 24 figures. Accepted for publication in Astronomy & Astrophysic

    Kondo resonances and anomalous gate dependence of electronic conduction in single-molecule transistors

    Get PDF
    We report Kondo resonances in the conduction of single-molecule transistors based on transition metal coordination complexes. We find Kondo temperatures in excess of 50 K, comparable to those in purely metallic systems. The observed gate dependence of the Kondo temperature is inconsistent with observations in semiconductor quantum dots and a simple single-dot-level model. We discuss possible explanations of this effect, in light of electronic structure calculations.Comment: 5 pages, four figures. Supplementary material at http://www.ruf.rice.edu/~natelson/publications.htm

    A new metric for rotating charged Gauss-Bonnet black holes in AdS spaces

    Full text link
    This paper presents a new metric for slowly rotating charged Gauss-Bonnet black holes in higher dimensional anti-de Sitter spaces. Taking the angular momentum parameter aa up to second order, the slowly rotating charged black hole solutions are obtained by working directly in the action.Comment: 11 pages and accepted by Chin. Phys.

    Worldline Casting of the Stochastic Vacuum Model and Non-Perturbative Properties of QCD: General Formalism and Applications

    Full text link
    The Stochastic Vacuum Model for QCD, proposed by Dosch and Simonov, is fused with a Worldline casting of the underlying theory, i.e. QCD. Important, non-perturbative features of the model are studied. In particular, contributions associated with the spin-field interaction are calculated and both the validity of the loop equations and of the Bianchi identity are explicitly demonstrated. As an application, a simulated meson-meson scattering problem is studied in the Regge kinematical regime. The process is modeled in terms of the "helicoidal" Wilson contour along the lines introduced by Janik and Peschanski in a related study based on a AdS/CFT-type approach. Working strictly in the framework of the Stochastic Vacuum Model and in a semiclassical approximation scheme the Regge behavior for the Scattering amplitude is demonstrated. Going beyond this approximation, the contribution resulting from boundary fluctuation of the Wilson loop contour is also estimated.Comment: 37 pages, 1 figure. Final version to appear in Phys.Rev.

    Inelastic electron tunneling via molecular vibrations in single-molecule transistors

    Get PDF
    In single-molecule transistors, we observe inelastic cotunneling features that correspond energetically to vibrational excitations of the molecule, as determined by Raman and infrared spectroscopy. This is a form of inelastic electron tunneling spectroscopy of single molecules, with the transistor geometry allowing in-situ tuning of the electronic states via a gate electrode. The vibrational features shift and change shape as the electronic levels are tuned near resonance, indicating significant modification of the vibrational states. When the molecule contains an unpaired electron, we also observe vibrational satellite features around the Kondo resonance.Comment: 5 pages, 4 figures. Supplementary information available upon reques

    Final state rescattering as a contribution to BργB \to \rho \gamma

    Full text link
    We provide a new estimate of the long-distance component to the radiative transition BργB \to \rho \gamma. Our mechanism involves the soft-scattering of on-shell hadronic products of nonleptonic BB decay, as in the chain BρρργB \to \rho\rho \to \rho\gamma. We employ a phenomenological fit to scattering data to estimate the effect. The specific intermediate states considered here modify the BργB \to \rho \gamma decay rate at roughly the 585 \to 8% level, although the underlying effect has the potential to be larger. Contrary to other mechanisms of long distance physics which have been discussed in the literature, this yields a non-negligible modification of the B0ρ0γB^0 \to \rho^0 \gamma channel and hence will provide an uncertainty in the extraction of VtdV_{td}. This mechanism also affects the isospin relation between the rates for BργB^- \to \rho^-\gamma and B0ρ0γB^0 \to \rho^0 \gamma and may generate CP asymmetries at experimentally observable levels.Comment: 15 pages, RevTex, 3 figure

    Cabibbo-allowed nonleptonic weak decays of charmed baryons

    Full text link
    Cabibbo-allowed nonleptonic weak decays of charmed baryons \lamc,~\xin,~\xip and Ωc0\Omega_c^0 into an octet baryon and a pseudoscalar meson are analyzed. The nonfactorizable contributions are evaluated under pole approximation, and it turns out that the ss-wave amplitudes are dominated by the low-lying \halfm resonances, while pp-wave ones governed by the ground-state \halfp poles. The MIT bag model is employed to calculate the coupling constants, form factors and baryon matrix elements. Our conclusions are: (i) ss waves are no longer dominated by commutator terms; the current-algebra method is certainly not applicable to parity-violating amplitudes, (ii) nonfactorizable WW exchange effects are generally important; they can be comparable to and somtimes even dominate over factorizable contributions, depending on the decay modes under consideration, (iii) large-NcN_c approximation for factorizable amplitudes also works in the heavy baryon sector and it accounts for the color nonsuppression of \lamc\ri p\bar{K}^0 relative to \lamc\ri\Lambda\pi^+, (iv) a measurement of the decay rate and the sign of the α\alpha asymmetry parameter of certain proposed decay modes will help discern various models; especially the sign of α\alpha in \lamc\ri\Sigma\pi decays can be used to unambiguously differentiate recent theoretical schemes from current algebra, and (v) pp waves are the dominant contributions to the decays \lamc\ri\Xi^0 K^+ and \xin\ri\Sigma^+ K^-, but they are subject to a large cancellation; this renders present theoretical predictions on these two channels unreliable.Comment: PHYZZX, 31 pages, 3 tables, IP-ASTP-10-93, ITP-SB-93-2

    Integrability and exact spectrum of a pairing model for nucleons

    Full text link
    A pairing model for nucleons, introduced by Richardson in 1966, which describes proton-neutron pairing as well as proton-proton and neutron-neutron pairing, is re-examined in the context of the Quantum Inverse Scattering Method. Specifically, this shows that the model is integrable by enabling the explicit construction of the conserved operators. We determine the eigenvalues of these operators in terms of the Bethe ansatz, which in turn leads to an expression for the energy eigenvalues of the Hamiltonian.Comment: 14 pages, latex, no figure
    corecore