3,581 research outputs found
Nonlinear atom optics and bright gap soliton generation in finite optical lattices
We theoretically investigate the transmission dynamics of coherent matter
wave pulses across finite optical lattices in both the linear and the nonlinear
regimes. The shape and the intensity of the transmitted pulse are found to
strongly depend on the parameters of the incident pulse, in particular its
velocity and density: a clear physical picture for the main features observed
in the numerical simulations is given in terms of the atomic band dispersion in
the periodic potential of the optical lattice. Signatures of nonlinear effects
due the atom-atom interaction are discussed in detail, such as atom optical
limiting and atom optical bistability. For positive scattering lengths, matter
waves propagating close to the top of the valence band are shown to be subject
to modulational instability. A new scheme for the experimental generation of
narrow bright gap solitons from a wide Bose-Einstein condensate is proposed:
the modulational instability is seeded in a controlled way starting from the
strongly modulated density profile of a standing matter wave and the solitonic
nature of the generated pulses is checked from their shape and their
collisional properties
Central adiposity and the propensity for rehearsal in children.
Background: There is increasing evidence that continuous activation of the hypothalamic-pituitary adrenal axis and the central sympathetic nervous system contributes to the pathogenesis of central adiposity via increased psychological stress. The purpose of this study was to examine the link between central adiposity and the propensity for Chinese children to rehearse emotionally upsetting events, a dimension of psychological stress. Additionally, gender differences in this relationship were explored.
Methods: Waist circumference, which is a marker of central adiposity and associated risks of developing cardiovascular disease, was measured and the propensity for rehearsal was assessed twice over two consecutive years in Hong Kong Chinese children (n = 194, aged 7–9 years), using a psychometric tool.
Results: Children with waist circumference indicative of a risk of cardiovascular disease displayed higher rehearsal scores than children categorized as “not at risk”, as did boys compared with girls. Our results suggest that central adiposity and the propensity for rehearsal of emotionally upsetting events may be linked in Chinese children.
Conclusion: Future prospective studies examining the direction of causality between central adiposity and rehearsal can potentially have valuable clinical implications
Optimal VM placement in data centres with architectural and resource constraints
Recent advance in virtualisation technology enables service provisioning in a flexible way by consolidating several virtual machines (VMs) into a single physical machine (PM). The inter-VM communications are inevitable when a group of VMs in a data centre provide services in a collaborative manner. With the increasing demands of such intra-data-centre traffics, it becomes essential to study the VM-to-PM placement such that the aggregated communication cost within a data centre is minimised. Such optimisation problem is proved NP-hard and formulated as an integer programming with quadratic constraints in this paper. Different from existing work, our formulation takes into consideration of data-centre architecture, inter-VM traffic pattern, and resource capacity of PMs. Furthermore, a heuristic algorithm is proposed and its high efficiency is extensively validated
Effective swimming strategies in low Reynolds number flows
The optimal strategy for a microscopic swimmer to migrate across a linear
shear flow is discussed. The two cases, in which the swimmer is located at
large distance, and in the proximity of a solid wall, are taken into account.
It is shown that migration can be achieved by means of a combination of sailing
through the flow and swimming, where the swimming strokes are induced by the
external flow without need of internal energy sources or external drives. The
structural dynamics required for the swimmer to move in the desired direction
is discussed and two simple models, based respectively on the presence of an
elastic structure, and on an orientation dependent friction, to control the
deformations induced by the external flow, are analyzed. In all cases, the
deformation sequence is a generalization of the tank-treading motion regimes
observed in vesicles in shear flows. Analytic expressions for the migration
velocity as a function of the deformation pattern and amplitude are provided.
The effects of thermal fluctuations on propulsion have been discussed and the
possibility that noise be exploited to overcome the limitations imposed on the
microswimmer by the scallop theorem have been discussed.Comment: 14 pages, 5 figure
PT-symmetric Solutions of Schrodinger Equation with position-dependent mass via Point Canonical Transformation
PT-symmetric solutions of Schrodinger equation are obtained for the Scarf and
generalized harmonic oscillator potentials with the position-dependent mass. A
general point canonical transformation is applied by using a free parameter.
Three different forms of mass distributions are used. A set of the energy
eigenvalues of the bound states and corresponding wave functions for target
potentials are obtained as a function of the free parameter.Comment: 13 page
Forbidden Landscape from Holography
We present a class of field configurations that are forbidden in the quantum
gravity because of inconsistency in the dual field theory from holography.
Scale invariant but non-conformal field theories are impossible in (1+1)
dimension, and so should be the corresponding gravity dual. In particular, the
"spontaneous Lorentz symmetry breaking" models and the "ghost condensation"
models, which are well-studied in phenomenology literatures, are forbidden in
any consistent quantum theories of gravity in (1+2) dimension since they
predict such inconsistent field configurations.Comment: 4pages, v2: some improvements, reference adde
Quantum magneto-oscillations in a two-dimensional Fermi liquid
Quantum magneto-oscillations provide a powerfull tool for quantifying
Fermi-liquid parameters of metals. In particular, the quasiparticle effective
mass and spin susceptibility are extracted from the experiment using the
Lifshitz-Kosevich formula, derived under the assumption that the properties of
the system in a non-zero magnetic field are determined uniquely by the
zero-field Fermi-liquid state. This assumption is valid in 3D but, generally
speaking, erroneous in 2D where the Lifshitz-Kosevich formula may be applied
only if the oscillations are strongly damped by thermal smearing and disorder.
In this work, the effects of interactions and disorder on the amplitude of
magneto-oscillations in 2D are studied. It is found that the effective mass
diverges logarithmically with decreasing temperature signaling a deviation from
the Fermi-liquid behavior. It is also shown that the quasiparticle lifetime due
to inelastic interactions does not enter the oscillation amplitude, although
these interactions do renormalize the effective mass. This result provides a
generalization of the Fowler-Prange theorem formulated originally for the
electron-phonon interaction.Comment: 4 pages, 1 figur
Quasi-local Energy for Spherically Symmetric Spacetimes
We present two complementary approaches for determining the reference for the
covariant Hamiltonian boundary term quasi-local energy and test them on
spherically symmetric spacetimes. On the one hand, we isometrically match the
2-surface and extremize the energy. This can be done in two ways, which we call
programs I (without constraint) and II (with additional constraints). On the
other hand, we match the orthonormal 4-frames of the dynamic and the reference
spacetimes. Then, if we further specify the observer by requiring the reference
displacement to be the timelike Killing vector of the reference, the result is
the same as program I, and the energy can be positive, zero, or even negative.
If, instead, we require that the Lie derivatives of the two-area along the
displacement vector in both the dynamic and reference spacetimes to be the
same, the result is the same as program II, and it satisfies the usual
criteria: the energies are non-negative and vanish only for Minkowski (or
anti-de Sitter) spacetime.Comment: 16 pages, no figure
Measure representation and multifractal analysis of complete genomes
This paper introduces the notion of measure representation of DNA sequences.
Spectral analysis and multifractal analysis are then performed on the measure
representations of a large number of complete genomes. The main aim of this
paper is to discuss the multifractal property of the measure representation and
the classification of bacteria. From the measure representations and the values
of the spectra and related curves, it is concluded that these
complete genomes are not random sequences. In fact, spectral analyses performed
indicate that these measure representations considered as time series, exhibit
strong long-range correlation. For substrings with length K=8, the
spectra of all organisms studied are multifractal-like and sufficiently smooth
for the curves to be meaningful. The curves of all bacteria
resemble a classical phase transition at a critical point. But the 'analogous'
phase transitions of chromosomes of non-bacteria organisms are different. Apart
from Chromosome 1 of {\it C. elegans}, they exhibit the shape of double-peaked
specific heat function.Comment: 12 pages with 9 figures and 1 tabl
Teleparallel Versions of Friedmann and Lewis-Papapetrou Spacetimes
This paper is devoted to investigate the teleparallel versions of the
Friedmann models as well as the Lewis-Papapetrou solution. We obtain the tetrad
and the torsion fields for both the spacetimes. It is shown that the
axial-vector vanishes for the Friedmann models. We discuss the different
possibilities of the axial-vector depending on the arbitrary functions
and in the Lewis-Papapetrou metric. The vector related with spin has
also been evaluated.Comment: 13 pages, accepted for publication in GR
- …
