180 research outputs found

    Site Specific Effects of Zoledronic Acid during Tibial and Mandibular Fracture Repair

    Get PDF
    Numerous factors can affect skeletal regeneration, including the extent of bone injury, mechanical loading, inflammation and exogenous molecules. Bisphosphonates are anticatabolic agents that have been widely used to treat a variety of metabolic bone diseases. Zoledronate (ZA), a nitrogen-containing bisphosphonate (N-BP), is the most potent bisphosphonate among the clinically approved bisphosphonates. Cases of bisphosphonate-induced osteonecrosis of the jaw have been reported in patients receiving long term N-BP treatment. Yet, osteonecrosis does not occur in long bones. The aim of this study was to compare the effects of zoledronate on long bone and cranial bone regeneration using a previously established model of non-stabilized tibial fractures and a new model of mandibular fracture repair. Contrary to tibial fractures, which heal mainly through endochondral ossification, mandibular fractures healed via endochondral and intramembranous ossification with a lesser degree of endochondral ossification compared to tibial fractures. In the tibia, ZA reduced callus and cartilage formation during the early stages of repair. In parallel, we found a delay in cartilage hypertrophy and a decrease in angiogenesis during the soft callus phase of repair. During later stages of repair, ZA delayed callus, cartilage and bone remodeling. In the mandible, ZA delayed callus, cartilage and bone remodeling in correlation with a decrease in osteoclast number during the soft and hard callus phases of repair. These results reveal a more profound impact of ZA on cartilage and bone remodeling in the mandible compared to the tibia. This may predispose mandible bone to adverse effects of ZA in disease conditions. These results also imply that therapeutic effects of ZA may need to be optimized using time and dose-specific treatments in cranial versus long bones

    Three-dimensional printing of patient-specific surgical plates in head and neck reconstruction: A prospective pilot study

    Get PDF
    Background Surgical plates have been extensively used in head and neck reconstruction and conventional plates are mass-produced with universal configurations. To overcome disadvantages of conventional surgical plates, we have been exploring patient-specific surgical plates using the three-dimensional (3D) printing technology. We hypothesized that the application of 3D-printed patient-specific surgical plates in head and neck reconstruction is feasible, safe and precise. Methods We are conducting a prospective clinical trial to assess the feasibility, safety and accuracy of applying 3D-printed patient-specific surgical plates in head and neck reconstruction. The primary endpoint was the intraoperative success rate. Secondary endpoints included the incidence and severity of postoperative adverse events within six months postoperatively. The accuracy of surgical outcomes was also explored by comparing the planned and final positions of the maxilla, mandible and grafted bone segments. Results From December 2016 to October 2017, ten patients were enrolled and underwent head and neck reconstruction using 3D-printed patient-specific surgical plates. The patient-specific surgical plates adapted to bone surface precisely and no plate-bending was performed. The intraoperative success rate was 100%. The average follow-up period was 6.5 months. No major adverse events were observed. The mean absolute distance deviation of integral mandible or maxilla was 1.40 ± 0.63 mm, which showed a high accuracy of reconstruction. Conclusions The 3D printing of patient-specific surgical plates could be effective in head and neck reconstruction. Surgical procedures were simplified. The precise jaw reconstruction was achieved with high accuracy. Long-term results with a larger sample size are warranted to support a final conclusion. The study protocol has been registered in ClinicalTrials.gov with a No. of NCT03057223

    Association between investigator-measured body-mass index and colorectal adenoma: a systematic review and meta-analysis of 168,201 subjects

    Get PDF
    The objective of this meta-analysis is to evaluate the odds of colorectal adenoma (CRA) in colorectal cancer screening participants with different body mass index (BMI) levels, and examine if this association was different according to gender and ethnicity. The EMBASE and MEDLINE were searched to enroll high quality observational studies that examined the association between investigator-measured BMI and colonoscopy-diagnosed CRA. Data were independently extracted by two reviewers. A random-effects meta-analysis was conducted to estimate the summary odds ratio (SOR) for the association between BMI and CRA. The Cochran’s Q statistic and I2 analyses were used to assess the heterogeneity. A total of 17 studies (168,201 subjects) were included. When compared with subjects having BMI < 25, individuals with BMI 25–30 had significantly higher risk of CRA (SOR 1.44, 95% CI 1.30–1.61; I2 = 43.0%). Subjects with BMI ≥ 30 had similarly higher risk of CRA (SOR 1.42, 95% CI 1.24–1.63; I2 = 18.5%). The heterogeneity was mild to moderate among studies. The associations were significantly higher than estimates by previous meta-analyses. There was no publication bias detected (Egger’s regression test, p = 0.584). Subgroup analysis showed that the magnitude of association was significantly higher in female than male subjects (SOR 1.43, 95% CI 1.30–1.58 vs. SOR 1.16, 95% CI 1.07–1.24; different among different ethnic groups (SOR 1.72, 1.44 and 0.88 in White, Asians and Africans, respectively) being insignificant in Africans; and no difference exists among different study designs. In summary, the risk conferred by BMI for CRA was significantly higher than that reported previously. These findings bear implications in CRA risk estimation

    Concomitant Hepatorenal Dysfunction and Malnutrition in Valvular Heart Surgery:Long-Term Prognostic Implications for Death and Heart Failure

    Get PDF
    BACKGROUND: Strategies to improve long-term prediction of heart failure and death in valvular surgery are urgently needed because of an increasing number of procedures globally. This study sought to report the prevalence, changes, and prognostic implications of concomitant hepatorenal dysfunction and malnutrition in valvular surgery. METHODS AND RESULTS: In 909 patients undergoing valvular surgery, 3 groups were defined based on hepatorenal function (the modified model for end-stage liver disease excluding international normalized ratio score) and nutritional status (Controlling Nutritional Status score): normal hepatorenal function and nutrition (normal), hepatorenal dysfunction or malnutrition alone (mild), and concomitant hepatorenal dysfunction and malnutrition (severe). Overall, 32%, 46%, and 19% of patients were classified into normal, mild, and severe groups, respectively. Over a 4.1-year median follow-up, mild and severe groups in-curred a higher risk of mortality (hazard ratio [HR], 3.17 [95% CI, 1.40–7.17] and HR, 9.30 [95% CI, 4.09– 21.16], respectively), cardiovascular death (subdistribution HR, 3.29 [95% CI, 1.14– 9.52] and subdistribution HR, 9.29 [95% CI, 3.09– 27.99]), heart failure hospitalization (subdistribution HR, 2.11 [95% CI, 1.25– 3.55] and subdistribution HR, 3.55 [95% CI, 2.04– 6.16]), and adverse outcomes (HR, 2.11 [95% CI, 1.25– 3.55] and HR, 3.55 [95% CI, 2.04– 6.16]). Modified model for end-stage liver disease excluding international normalized ratio and controlling nutritional status scores improved the predictive ability of European System for Cardiac Operative Risk Evaluation (area under the curve: 0.80 versus 0.73, P<0.001) and Society of Thoracic Surgeons score (area under the curve: 0.79 versus 0.72, P=0.004) for all-cause mortality. One year following surgery (n=707), patients with persistent concomitant hepatorenal dysfunction and malnutrition (severe) experienced worse outcomes than those without.  CONCLUSIONS: Concomitant hepatorenal dysfunction and malnutrition was frequent and strongly linked to heart failure and mortality in valvular surgery

    Yeast arginine methyltransferase Hmt1p regulates transcription elongation and termination by methylating Npl3p

    Get PDF
    The heterogeneous nuclear ribonucleoprotein Npl3p of budding yeast is a substrate of arginine methyltransferase Hmt1p, but the role of Hmt1p in regulating Npl3p’s functions in transcription antitermination and elongation were unknown. We found that mutants lacking Hmt1p methyltransferase activity exhibit reduced recruitment of Npl3p, but elevated recruitment of a component of mRNA cleavage/termination factor CFI, to the activated GAL10-GAL7 locus. Consistent with this, hmt1 mutants displayed increased termination at the defective gal10-Δ56 terminator. Remarkably, hmt1Δ cells also exhibit diminished recruitment of elongation factor Tho2p and a reduced rate of transcription elongation in vivo. Importantly, the defects in Npl3p and Tho2p recruitment, antitermination and elongation in hmt1Δ cells all were mitigated by substitutions in Npl3p RGG repeats that functionally mimic arginine methylation by Hmt1p. Thus, Hmt1p promotes elongation and suppresses termination at cryptic terminators by methylating RGG repeats in Npl3p. As Hmt1p stimulates dissociation of Tho2p from an Npl3p-mRNP complex, it could act to recycle these elongation and antitermination factors back to sites of ongoing transcription

    Relatively preserved functional immune capacity with standard COVID-19 vaccine regimen in people living with HIV

    Get PDF
    IntroductionPeople living with HIV (PLWH) are at a higher risk of severe disease with SARS-CoV-2 virus infection. COVID-19 vaccines are effective in most PLWH. However, suboptimal immune responses to the standard two-shot regimen are a concern, especially for those with moderate to severe immunodeficiency. An additional dose is recommended as part of the extended primary series in Taiwan. Herein, we study the efficacy of this additional shot in PLWH with mild immunodeficiency compared to that in healthy non-HIV people.MethodsIn total, 72 PLWH that were asymptomatic or with mild immunodeficiency (CD4 counts ≥200/mm3) and suppressed virology, and 362 healthcare workers of our hospital were enrolled. None of the participants had a history of SARS-CoV-2 infection. They received mRNA-1273 and ChAdOx1 vaccines. Anti-SARS-CoV-2 neutralizing and anti-Spike IgG antibodies, and SARS-CoV-2-specific T cell responses were evaluated.ResultsThe standard two-shot regimen elicited lower responses in PLWH than the healthcare workers without HIV infection, although the difference was statistically insignificant. They had comparable levels of neutralizing and anti-Spike antibodies and comparable effector CD4+ and CD8+ T cell responses. The third shot boosted the SARS-CoV-2 immunity significantly more with better antibody responses and higher IFN-γ and IL-2 responses of the CD4+ and CD8+ T cells in PLWH compared to those without HIV. Upon in vitro stimulation with extracted Wuhan strain SARS-CoV-2 proteins, CD8+ T cells from PLWH after 3 shots had more durable effector responses than the non-HIV controls with extended time of stimulation.ConclusionThis subtle difference between PLWH and non-HIV people implied immune exhaustion with two shots in non-HIV people. Slightly compromised immunity in PLWH indeed preserved the functional capacity for further response to the third shot or natural infection
    corecore