146 research outputs found

    Nonlinear Waves in Rods and Beams of Power-Law Materials

    Get PDF
    Some novel traveling waves and special solutions to the 1D nonlinear dynamic equations of rod and beam of power-law materials are found in closed forms. The traveling solutions represent waves of high elevation that propagates without change of forms in time. These waves resemble the usual kink waves except that they do not possess bounded elevations. The special solutions satisfying certain boundary and initial conditions are presented to demonstrate the nonlinear behavior of the materials. This note demonstrates the apparent distinctions between linear elastic and nonlinear plastic waves

    Local Discontinuous Galerkin Methods Coupled with Implicit Integration Factor Methods for Solving Reaction-Cross-Diffusion Systems

    Get PDF
    We present a new numerical method for solving nonlinear reaction-diffusion systems with cross-diffusion which are often taken as mathematical models for many applications in the biological, physical, and chemical sciences. The two-dimensional system is discretized by the local discontinuous Galerkin (LDG) method on unstructured triangular meshes associated with the piecewise linear finite element spaces, which can derive not only numerical solutions but also approximations for fluxes at the same time comparing with most of study work up to now which has derived numerical solutions only. Considering the stability requirement for the explicit scheme with strict time step restriction (Δt=O(hmin2)), the implicit integration factor (IIF) method is employed for the temporal discretization so that the time step can be relaxed as Δt=O(hmin). Moreover, the method allows us to compute element by element and avoids solving a global system of nonlinear algebraic equations as the standard implicit schemes do, which can reduce the computational cost greatly. Numerical simulations about the system with exact solution and the Brusselator model, which is a theoretical model for a type of autocatalytic chemical reaction, are conducted to confirm the expected accuracy, efficiency, and advantages of the proposed schemes

    A deformable plate interacting with a non-Newtonian fluid in three dimensions

    Get PDF
    We consider a deformable plate interacting with a non-Newtonian fluid flow in three dimensions as a simple model problem for fluid-structure-interaction phenomena in life sciences (e.g., red blood cell interacting with blood flow). A power-law function is used for the constitutive equation of the non-Newtonian fluid. The lattice Boltzmann equation (the D3Q19 model) is used for modeling the fluid flow. The immersed boundary (IB) method is used for modeling the flexible plate and handling the fluid-plate interaction. The plate drag and its scaling are studied; the influences of three dimensionless parameters (power-law exponent, bending modulus, and generalized Reynolds number) are investigated

    ICAR: Image-based Complementary Auto Reasoning

    Full text link
    Scene-aware Complementary Item Retrieval (CIR) is a challenging task which requires to generate a set of compatible items across domains. Due to the subjectivity, it is difficult to set up a rigorous standard for both data collection and learning objectives. To address this challenging task, we propose a visual compatibility concept, composed of similarity (resembling in color, geometry, texture, and etc.) and complementarity (different items like table vs chair completing a group). Based on this notion, we propose a compatibility learning framework, a category-aware Flexible Bidirectional Transformer (FBT), for visual "scene-based set compatibility reasoning" with the cross-domain visual similarity input and auto-regressive complementary item generation. We introduce a "Flexible Bidirectional Transformer (FBT)" consisting of an encoder with flexible masking, a category prediction arm, and an auto-regressive visual embedding prediction arm. And the inputs for FBT are cross-domain visual similarity invariant embeddings, making this framework quite generalizable. Furthermore, our proposed FBT model learns the inter-object compatibility from a large set of scene images in a self-supervised way. Compared with the SOTA methods, this approach achieves up to 5.3% and 9.6% in FITB score and 22.3% and 31.8% SFID improvement on fashion and furniture, respectively

    A symplectic dynamics approach to the spatial isosceles three-body problem

    Full text link
    We study the spatial isosceles three-body problem from the perspective of Symplectic Dynamics. For certain choices of mass ratio, angular momentum, and energy, the dynamics on the energy surface is equivalent to a Reeb flow on the tight three-sphere. We find a Hopf link formed by the Euler orbit and a symmetric brake orbit, which spans an open book decomposition whose pages are annulus-like global surfaces of section. In the case of large mass ratios, the Hopf link is non-resonant, forcing the existence of infinitely many periodic orbits. The rotation number of the Euler orbit plays a fundamental role in the existence of periodic orbits and their symmetries. We explore such symmetries in the Hill region and show that the Euler orbit is negative hyperbolic for an open set of parameters while it can never be positive hyperbolic. Finally, we address convexity and determine for each parameter whether the energy surface is strictly convex, convex, or non-convex. Dynamical consequences of this fact are then discussed.Comment: 66 pages, 15 figure
    corecore