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We present a new numerical method for solving nonlinear reaction-diffusion systems with cross-diffusion which are often taken
as mathematical models for many applications in the biological, physical, and chemical sciences. The two-dimensional system is
discretized by the local discontinuous Galerkin (LDG) method on unstructured triangular meshes associated with the piecewise
linear finite element spaces, which can derive not only numerical solutions but also approximations for fluxes at the same time
comparing with most of study work up to now which has derived numerical solutions only. Considering the stability requirement
for the explicit scheme with strict time step restriction (Δ𝑡 = 𝑂(ℎ

2

min)), the implicit integration factor (IIF) method is employed
for the temporal discretization so that the time step can be relaxed as Δ𝑡 = 𝑂(ℎmin). Moreover, the method allows us to compute
element by element and avoids solving a global system of nonlinear algebraic equations as the standard implicit schemes do, which
can reduce the computational cost greatly. Numerical simulations about the system with exact solution and the Brusselator model,
which is a theoreticalmodel for a type of autocatalytic chemical reaction, are conducted to confirm the expected accuracy, efficiency,
and advantages of the proposed schemes.

1. Introduction

In 1952, Turing proposed the reaction-diffusion systems in
the seminal paper [1], which constitute an essential basis
to describe morphogenetic mechanisms. It was suggested
that, in a reaction-diffusion system describing the interaction
between two species, different diffusion rates can lead to
the destabilization of a constant steady state, followed by
the transition to a nonhomogeneous steady state. According
to this result, the equilibrium of the nonlinear system is
asymptotically stable in the absence of diffusion but unstable
in the presence of diffusion, which is called Turing unstable
[2, 3].This mechanism, known as diffusion driven instability,
leads to the pattern appearance. In [4], Levin and Segel
added diffusion to a planktonic system and demonstrated

that diffusion plays an important role in generating spatial
patterns. And these phenomena of spatial patterns have also
been reported in [5–7] (see [8] for an extensive review).

Most of the reaction-diffusion systems used to predict
the formation of patterns assumed that the diffusion of
each species depends only on the gradient of the density of
the species itself. However, cross-diffusion terms should be
introduced when the gradient of the density of one species
induces not only a flux of the species itself but also a flux
of another species, which was originally introduced in the
context of population dynamics [9] and has now gained a
renewed interest in diverse contexts like ecology [10–12],
social systems [13], drift-diffusion in semiconductors [14–16],
granular materials [17], and other references [18–21].
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In this paper, we study the reaction-diffusion system with
both self-diffusion and cross-diffusion:

𝜕𝑢

𝜕𝑡
= Δ (𝑏

11
𝑢 + 𝑏
12
V) + 𝑓 (𝑢, V) ,

𝜕V
𝜕𝑡

= Δ (𝑏
21
𝑢 + 𝑏
22
V) + 𝑔 (𝑢, V) ,

(1)

where 𝑢, V are the two biological or physical species or even
two chemical concentrations,𝑓, 𝑔describe the reaction kinet-
ics, and B = (

𝑏
11
𝑏
12

𝑏
21
𝑏
22

) is the diffusion constant matrix. Here,
the diagonal elements 𝑏

11
, 𝑏
22

are called self-diffusion coef-
ficients; the nondiagonals 𝑏

12
, 𝑏
21

are called cross-diffusion
coefficients. The term Δ(𝑏

11
𝑢) = ∇ ⋅ (∇(𝑏

11
𝑢)) takes into

account the flux of 𝑢, ∇(𝑏
11
𝑢), induced by the gradient of

species 𝑢, and the other three terms are the same.
In addition to the above theoretical aspects, an important

interest lies in the behavior of numerical approximations
exhibiting spatial pattern. And there are many numerical
schemes to simulate system (1) including the finite difference
methods, spectral methods, finite volume methods, and
finite element methods. However, finite difference methods
and spectral methods are constrained with the compli-
cated and irregular domain geometries. At this point, they
are not so popular as finite volume methods and finite
element methods. In [22–24], the finite volume method
proposed by Andreianov et al. [25] was adopted for the
numerical treatment of the reaction-cross-diffusion system,
and the formation and identification of spatial patterns
were studied. And in [26], two kinds of finite element
methods, which contain variational multiscale element-
free Galerkin (VMEFG) and local discontinuous Galerkin
(LDG) methods proposed by Cockburn and Shu [27], were
applied to discretize the space derivative of the system.
And fourth-order exponential time differencing Runge-Kutta
method [28, 29] has been employed for temporal discretiza-
tion.

In this paper, we choose to pursue LDG method, where
more general numerical fluxes than those in [26] are used,
coupledwithKrylov implicit integration factor (IIF)methods
[30, 31] for temporal discretization which is based on the
IIF method [32]. By applying this method, we can derive
the numerical approximations not only for solutions but
also for fluxes at the same time. What is more, we can
relax the time step Δ𝑡 = 𝑂(ℎ

2

min) necessary for explicit
schemes to Δ𝑡 = 𝑂(ℎmin). Moreover, the method allows
us to compute element by element and avoids solving a
global systemof nonlinear algebraic equations as the standard
implicit schemes do,which can reduce the computational cost
greatly.

The rest of this paper is organized as follows. In Section 2,
we present the LDG formulation for spatial discretization,
eliminate the auxiliary variables q

ℎ
, p
ℎ
at the element level,

and then apply the second-order IIFmethods to discretize the
resulting ordinary differential equations (ODEs) which have
only original variables 𝑢

ℎ
, V
ℎ
as unknowns. In Section 3, some

numerical experiments including the test system with exact
solutions and the Brusselator model (see, e.g., [33, 34]) are

conducted to show that the results obtained by our method
agree well with those in [23, 26] and our method possesses
its own advantages. Finally, some conclusions are drawn in
Section 4.

2. Construction of the Fully Discrete Scheme

In this section, we present the fully discrete scheme, which
was obtained by combining the LDG method with the IIF
method, to solve the nonlinear reaction-diffusion system (1).
Here we consider the system defined on Ω × [0, 𝑇], together
with no-flux boundary conditions,

𝜕𝑢 (𝑥, 𝑦, 𝑡)

𝜕n
= 0,

𝜕V (𝑥, 𝑦, 𝑡)
𝜕n

= 0,

(2)

and appropriate initial conditions,

𝑢 (𝑥, 𝑦, 0) = 𝑢
0
(𝑥, 𝑦) ,

V (𝑥, 𝑦, 0) = V
0
(𝑥, 𝑦) ,

(3)

where Ω is an open, bounded domain Ω ⊂ R2 and n is the
outward unit normal to 𝜕Ω.

Let T
ℎ
= {𝐾} be regular triangulation of Ω, and ℎ is the

mesh size. E
ℎ
denotes the collection of all edges in T

ℎ
. E∘
ℎ

and E𝑏
ℎ
are the sets of interior edges and boundary edges,

respectively.

2.1. The LDG Method for Spatial Discretization. Firstly, by
introducing two auxiliary variables q = 𝑏

11
∇𝑢 and p =

𝑏
22
∇V, we rewrite (1) as the following first-order differential

equations:

q − 𝑏
11
∇𝑢 = 0,

p − 𝑏
22
∇V = 0,

𝜕𝑢

𝜕𝑡
− ∇ ⋅ q −

𝑏
12

𝑏
22

∇ ⋅ p = 𝑓 (𝑢, V) ,

𝜕V
𝜕𝑡

− ∇ ⋅ p −
𝑏
21

𝑏
11

∇ ⋅ q = 𝑔 (𝑢, V) .

(4)

Define the finite element space as follows:

𝑉
ℎ
= {𝑟
ℎ
∈ 𝐿
2
(Ω) : 𝑟

ℎ

𝐾
∈ 𝑃
1
(𝐾) , ∀𝐾 ∈ T

ℎ
} ,

W
ℎ

= {w
ℎ
∈ (𝐿
2
(Ω))
2

: w
ℎ

𝐾
∈ (𝑃
1
(𝐾))
2

, ∀𝐾 ∈ T
ℎ
} ,

(5)
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where 𝑃
1
(𝐾) denotes the linear polynomials defined on

element𝐾.
Then the semidiscrete LDG formulation can be defined

as follows. For 𝑡 ∈ (0, 𝑇], find q
ℎ
(𝑡), p
ℎ
(𝑡) ∈ W

ℎ
and 𝑢

ℎ
(𝑡),

V
ℎ
(𝑡) ∈ 𝑉

ℎ
such that, for ∀w𝑢

ℎ
,wV
ℎ
∈ W
ℎ
and ∀𝑟

𝑢

ℎ
, 𝑟

V
ℎ
∈ 𝑉
ℎ
,

∫
𝐾

q
ℎ
⋅ w𝑢
ℎ
𝑑x + ∫

𝐾

𝑢
ℎ
∇ ⋅ (𝑏
11
w𝑢
ℎ
) 𝑑x

− ∫
𝜕𝐾

𝑢
ℎ
𝑏
11
w𝑢
ℎ
⋅ n
𝐾
𝑑𝑠 = 0,

∫
𝐾

p
ℎ
⋅ wV
ℎ
𝑑x + ∫

𝐾

V
ℎ
∇ ⋅ (𝑏
22
wV
ℎ
) 𝑑x

− ∫
𝜕𝐾

V̂
ℎ
𝑏
22
wV
ℎ
⋅ n
𝐾
𝑑𝑠 = 0,

∫
𝐾

𝜕𝑢
ℎ

𝜕𝑡
𝑟
𝑢

ℎ
𝑑x + (∫

𝐾

q
ℎ
⋅ ∇𝑟
𝑢

ℎ
𝑑x − ∫

𝜕𝐾

q̂
ℎ
⋅ n
𝐾
𝑟
𝑢

ℎ
𝑑𝑠)

+
𝑏
12

𝑏
22

(∫
𝐾

p
ℎ
⋅ ∇𝑟
𝑢

ℎ
𝑑x − ∫

𝜕𝐾

p̂
ℎ
⋅ n
𝐾
𝑟
𝑢

ℎ
𝑑𝑠)

= ∫
𝐾

𝑓 (𝑢
ℎ
, V
ℎ
) 𝑟
𝑢

ℎ
𝑑x,

∫
𝐾

𝜕V
ℎ

𝜕𝑡
𝑟
V
ℎ
𝑑x + (∫

𝐾

p
ℎ
⋅ ∇𝑟

V
ℎ
𝑑x − ∫

𝜕𝐾

p̂
ℎ
⋅ n
𝐾
𝑟
V
ℎ
𝑑𝑠)

+
𝑏
21

𝑏
11

(∫
𝐾

q
ℎ
⋅ ∇𝑟

V
ℎ
𝑑x − ∫

𝜕K
q̂
ℎ
⋅ n
𝐾
𝑟
V
ℎ
𝑑𝑠)

= ∫
𝐾

𝑔 (𝑢
ℎ
, V
ℎ
) 𝑟

V
ℎ
𝑑x,

(6)

where n
𝐾

is the outward unit normal vector to 𝜕𝐾. The
quantities 𝑢

ℎ
and q̂

ℎ
are the so-called numerical fluxes and

are chosen as [35]

𝑢
ℎ

𝑒
= {𝑢
ℎ
} + C
12
⋅ [𝑢
ℎ
] ,

q̂
ℎ

𝑒
= {q
ℎ
} − 𝐶
11
[𝑢
ℎ
] − C
12
[q
ℎ
] ,

∀𝑒 ∈ E
∘

ℎ
.

(7)

The stability parameter 𝐶
11

> 0 is taken to be 𝑂(ℎ
−1

𝑒
) to

enhance the accuracy of the LDG method. The auxiliary
vector parameter C

12
is generally chosen as C

12
⋅ n
𝑒
= 𝑂(1)

on each edge 𝑒.
The boundary conditions (2) are imposed through the

following definition of the numerical fluxes:

𝑢
ℎ

𝑒
= 𝑢
ℎ
,

q̂
ℎ

𝑒
= 0,

∀𝑒 ∈ E
𝑏

ℎ
.

(8)

The numerical fluxes V̂
ℎ
and p̂

ℎ
can be defined similar to 𝑢

ℎ

and q̂
ℎ
, respectively.

By use of basis functions, we express 𝑢
ℎ
, V
ℎ
and q

ℎ
=

(𝑞
ℎ,𝑥
, 𝑞
ℎ,𝑦

), p
ℎ
= (𝑝
ℎ,𝑥
, 𝑝
ℎ,𝑦

) in element𝐾 as

𝑢
ℎ
=

3

∑

𝑖=1

𝑢
𝑖
(𝑡) 𝜙
𝑖
(𝑥, 𝑦) = Φ

𝑇u,

V
ℎ
=

3

∑

𝑖=1

V
𝑖
(𝑡) 𝜙
𝑖
(𝑥, 𝑦) = Φ

𝑇k,

𝑞
ℎ,𝑙

=

3

∑

𝑖=1

𝑞
𝑙,𝑖
(𝑡) 𝜙
𝑖
(𝑥, 𝑦) = Φ

𝑇q
𝑙
,

𝑝
ℎ,𝑙

=

3

∑

𝑖=1

𝑝
𝑙,𝑖
(𝑡) 𝜙
𝑖
(𝑥, 𝑦) = Φ

𝑇p
𝑙
,

𝑙 = 𝑥, 𝑦,

(9)

where Φ denotes the basis functions:

Φ = (

𝜙
1
(𝑥, 𝑦)

𝜙
2
(𝑥, 𝑦)

𝜙
3
(𝑥, 𝑦)

) , (10)

and u, k, q
𝑙
, p
𝑙
, 𝑙 = 𝑥, 𝑦, are the corresponding degrees of

freedom:

u = (

𝑢
1
(𝑡)

𝑢
2
(𝑡)

𝑢
3
(𝑡)

) ,

k = (

V
1
(𝑡)

V
2
(𝑡)

V
3
(𝑡)

) ,

q
𝑙
= (

𝑞
𝑙,1
(𝑡)

𝑞
𝑙,2
(𝑡)

𝑞
𝑙,3
(𝑡)

) ,

p
𝑙
= (

𝑝
𝑙,1
(𝑡)

𝑝
𝑙,2
(𝑡)

𝑝
𝑙,3
(𝑡)

) .

(11)

For element𝐾, let𝐾
𝑖
, 𝑖 = 1, 2, 3, denote its three adjacent

elements. And we employ the subscript (𝑁𝐵) to mark the
quantities belonging to the adjacent elements (see Figure 1).

Then, substituting (7) into (6), and applying expressions
(9), we can obtain the matrix form for interior element 𝐾,
where we do by the same way with that in [36]:



4 Discrete Dynamics in Nature and Society

(NB, 1)

(NB, 2)

(NB, 3)

(NB, 1)_(NB, 2)

(NB, 1)_(NB, 3)

(NB, 2)_(NB, 3) (NB, 2)_(NB, 1)

(NB, 3)_(NB, 1)

(NB, 3)_(NB, 2)

(NB, 1)_(NB, 1)

(NB, 3)_(NB, 3)

(NB, 2)_(NB, 2)
K

K1

K2

K3

Figure 1: The sketch of triangular element 𝐾 and its neighbor elements.

(
(
(
(
(

(

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 M 0

0 0 0 0 0 M

)
)
)
)
)

)

(
(
(
(
(

(

(q
𝑥
)
𝑡

(q
𝑦
)
𝑡

(p
𝑥
)
𝑡

(p
𝑦
)
𝑡

(u)
𝑡

(k)
𝑡

)
)
)
)
)

)

+

(
(
(
(
(
(
(
(

(

M 0 0 0 𝑏
11
H
𝑥

0

0 M 0 0 𝑏
11
H
𝑦

0

0 0 M 0 0 𝑏
22
H
𝑥

0 0 0 M 0 𝑏
22
H
𝑦

J
𝑥

J
𝑦

𝑏
12

𝑏
22

J
𝑥

𝑏
12

𝑏
22

J
𝑦

0 0

𝑏
21

𝑏
11

J
𝑥

𝑏
21

𝑏
11

J
𝑦

J
𝑥

J
𝑦

0 0

)
)
)
)
)
)
)
)

)

(
(
(
(
(

(

q
𝑥

q
𝑦

p
𝑥

p
𝑦

u
k

)
)
)
)
)

)

+

3

∑

𝑖=1

(
(
(
(
(
(
(
(

(

0 0 0 0 𝑏
11
H
𝑥,𝑖

0

0 0 0 0 𝑏
11
H
𝑦,𝑖

0

0 0 0 0 0 𝑏
22
H
𝑥,𝑖

0 0 0 0 0 𝑏
22
H
𝑦,𝑖

J
𝑥,𝑖

J
𝑦,𝑖

𝑏
12

𝑏
22

J
𝑥,𝑖

𝑏
12

𝑏
22

J
𝑦,𝑖

G
𝑢,𝑖

𝑏
12

𝑏
22

G
𝑢,𝑖

𝑏
21

𝑏
11

J
𝑥,𝑖

𝑏
21

𝑏
11

J
𝑦,𝑖

J
𝑥,𝑖

J
𝑦,𝑖

𝑏
21

𝑏
11

G
𝑢,𝑖

G
𝑢,𝑖

)
)
)
)
)
)
)
)

)

(
(
(
(
(

(

q
𝑥

q
𝑦

p
𝑥

p
𝑦

u
k

)
)
)
)
)

)

+

3

∑

𝑖=1

(
(
(
(
(
(
(
(

(

0 0 0 0 𝑏
11
H
𝑥,𝐵,𝑖

0

0 0 0 0 𝑏
11
H
𝑦,𝐵,𝑖

0

0 0 0 0 0 𝑏
22
H
𝑥,𝐵,𝑖

0 0 0 0 0 𝑏
22
H
𝑦,𝐵,𝑖

J
𝑥,𝐵,𝑖

J
𝑦,𝐵,𝑖

𝑏
12

𝑏
22

J
𝑥,𝐵,𝑖

𝑏
12

𝑏
22

J
𝑦,𝐵,𝑖

G
𝑢,𝐵,𝑖

𝑏
12

𝑏
22

G
𝑢,𝐵,𝑖

𝑏
21

𝑏
11

J
𝑥,𝐵,𝑖

𝑏
21

𝑏
11

J
𝑦,𝐵,𝑖

J
𝑥,𝐵,𝑖

J
𝑦,𝐵,𝑖

𝑏
21

𝑏
11

G
𝑢,𝐵,𝑖

G
𝑢,𝐵,𝑖

)
)
)
)
)
)
)
)

)

(
(
(
(
(

(

q
𝑥

q
𝑦

p
𝑥

p
𝑦

u
k

)
)
)
)
)

)(𝑁𝐵,𝑖)

=

(
(
(
(
(

(

0

0

0

0

S
𝑢

SV

)
)
)
)
)

)

,

(12)
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where (u)
𝑡

= 𝜕u/𝜕𝑡 and (k)
𝑡

= 𝜕k/𝜕𝑡 denote the time
derivatives and the matrices are calculated as follows: for 𝑚,
𝑛 = 1, 2, 3,

M
𝑚𝑛

= ∫
𝐾

𝜙
𝑚
𝜙
𝑛
𝑑x,

S
𝑢,𝑚

= ∫
𝐾

𝑓 (𝑢
ℎ
, V
ℎ
) 𝜙
𝑚
𝑑x,

SV,𝑚 = ∫
𝐾

𝑔 (𝑢
ℎ
, V
ℎ
) 𝜙
𝑚
𝑑x,

J
𝑙,𝑚𝑛

= ∫
𝐾

𝜕𝜙
𝑚

𝜕𝑙
𝜙
𝑛
𝑑x,

H
𝑙,𝑚𝑛

= J
𝑙,𝑚𝑛

= ∫
𝐾

𝜕𝜙
𝑚

𝜕𝑙
𝜙
𝑛
𝑑x,

𝑙 = 𝑥, 𝑦,

G
𝑢,𝑖,𝑚𝑛

= ∫
(𝜕𝐾)
𝑖

𝐶
11
𝜙
𝑚
𝜙
𝑛
𝑑x,

G
𝑢,𝐵,𝑖,𝑚𝑛

= −∫
(𝜕𝐾)
𝑖

𝐶
11
𝜙
𝑚
(𝜙
𝑛
)
(𝑁𝐵,𝑖)

𝑑x,

𝑖 = 1, 2, 3,

H
𝑙,𝑖,𝑚𝑛

= −∫
(𝜕𝐾)
𝑖

(
1

2
+ 𝐶
12
)𝜙
𝑚
𝜙
𝑛
𝑛
𝑙
𝑑𝑠,

H
𝑙,𝐵,𝑖,𝑚𝑛

= −∫
(𝜕𝐾)
𝑖

(
1

2
− 𝐶
12
)𝜙
𝑚
(𝜙
𝑛
)
(𝑁𝐵,𝑖)

𝑛
𝑙
𝑑𝑠,

J
𝑙,𝑖,𝑚𝑛

= −∫
(𝜕𝐾)
𝑖

(
1

2
− 𝐶
12
)𝜙
𝑚
𝜙
𝑛
𝑛
𝑙
𝑑𝑠,

J
𝑙,𝐵,𝑖,𝑚𝑛

= −∫
(𝜕𝐾)
𝑖

(
1

2
+ 𝐶
12
)𝜙
𝑚
(𝜙
𝑛
)
(𝑁𝐵,𝑖)

𝑛
𝑙
𝑑𝑠,

(13)

where 𝜕𝐾 = ∪
3

𝑖=1
(𝜕𝐾)
𝑖
, with (𝜕𝐾)

𝑖
denoting the common

edge between element𝐾 and its adjacent element𝐾
𝑖
. We also

use the relations that n = n
𝐾
= (𝑛
𝑥
, 𝑛
𝑦
), 𝐶
12

= C
12

⋅ n, and
n
(𝑁𝐵)

= −n.

Remark 1. If the edge (𝜕𝐾)
𝑖
shared by𝐾 and𝐾

𝑖
is a boundary

edge, that is to say,𝐾
𝑖
does not exist, then the above matrices

related to the edge (𝜕𝐾)
𝑖
can have some differences. We only

need to insert the numerical fluxes on boundary edges (8)
into (6).Then, by the sameway, we can derive thematrices for
the boundary edges.The quantitiesG

𝑢,𝐵,𝑖
,H
𝑙,𝐵,𝑖

, and J
𝑙,𝐵,𝑖

, 𝑙 =

𝑥, 𝑦, are not needed and should be gotten rid of. In addition,

J
𝑙,𝑖,𝑚𝑛

= 0,

G
𝑢,𝑖,𝑚𝑛

= 0,

H
𝑙,𝑖,𝑚𝑛

= −∫
(𝜕𝐾)
𝑖

𝜙
𝑚
𝜙
𝑛
𝑛
𝑙
𝑑𝑠,

𝑙 = 𝑥, 𝑦.

(14)

To facilitate computations, we rewrite the above matrix
form into two separate matrix equations:

(

M 0 0 0

0 M 0 0

0 0 M 0

0 0 0 M

)(

q
𝑥

q
𝑦

p
𝑥

p
𝑦

)

+(

𝑏
11
HH
𝑥

0

𝑏
11
HH
𝑦

0

0 𝑏
22
HH
𝑥

0 𝑏
22
HH
𝑦

)(

u
k
)

+

3

∑

𝑖=1

(

𝑏
11
H
𝑥,𝐵,𝑖

0

𝑏
11
H
𝑦,𝐵,𝑖

0

0 𝑏
22
H
𝑥,𝐵,𝑖

0 𝑏
22
H
𝑦,𝐵,𝑖

)(

u
k
)

(𝑁𝐵,𝑖)

= (

0

0

0

0

),

(15)

(

M 0

0 M
)(

(u)
𝑡

(k)
𝑡

)

+(

JJ
𝑥

JJ
𝑦

𝑏
12

𝑏
22

JJ
𝑥

𝑏
12

𝑏
22

JJ
𝑦

𝑏
21

𝑏
11

JJ
𝑥

𝑏
21

𝑏
11

JJ
𝑦

JJ
𝑥

JJ
𝑦

)(

q
𝑥

q
𝑦

p
𝑥

p
𝑦

)

+(

G
𝑈

𝑏
12

𝑏
22

G
𝑈

𝑏
21

𝑏
11

G
𝑈

G
𝑈

)(

u
k
)

+

3

∑

𝑖=1

(

J
𝑥,𝐵,𝑖

J
𝑦,𝐵,𝑖

𝑏
12

𝑏
22

J
𝑥,𝐵,𝑖

𝑏
12

𝑏
22

J
𝑦,𝐵,𝑖

𝑏
21

𝑏
11

J
𝑥,𝐵,𝑖

𝑏
21

𝑏
11

J
𝑦,𝐵,𝑖

J
𝑥,𝐵,𝑖

J
𝑦,𝐵,𝑖

)

⋅(

q
𝑥

q
𝑦

p
𝑥

p
𝑦

)

(𝑁𝐵,𝑖)

+

3

∑

𝑖=1

(

G
𝑢,𝐵,𝑖

𝑏
12

𝑏
22

G
𝑢,𝐵,𝑖

𝑏
21

𝑏
11

G
𝑢,𝐵,𝑖

G
𝑢,𝐵,𝑖

)

⋅ (

u
k
)

(𝑁𝐵,𝑖)

= (

S
𝑢

SV
) ,

(16)

where we use the notifications

HH
𝑥
= H
𝑥
+

3

∑

𝑖=1

H
𝑥,𝑖
,

HH
𝑦
= H
𝑦
+

3

∑

𝑖=1

H
𝑦,𝑖
,

JJ
𝑥
= J
𝑥
+

3

∑

𝑖=1

J
𝑥,𝑖
,
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JJ
𝑦
= J
𝑦
+

3

∑

𝑖=1

J
𝑦,𝑖
,

G
𝑈
=

3

∑

𝑖=1

G
𝑢,𝑖
.

(17)

In this paper, we take the degrees of freedom as the values
of midpoints at three edges of𝐾; then

M ≈
|𝐾|

3
I,

S
𝑢
≈
|𝐾|

3
f (u, k) ,

SV ≈
|𝐾|

3
g (u, k) ,

(18)

where |𝐾| is the area of element 𝐾, I is the unit matrix, and

f (u, k) = (

𝑓 (𝑢
1
, V
1
)

𝑓 (𝑢
2
, V
2
)

𝑓 (𝑢
3
, V
3
)

) ,

g (u, k) = (

𝑔 (𝑢
1
, V
1
)

𝑔 (𝑢
2
, V
2
)

𝑓 (𝑢
3
, V
3
)

) .

(19)

At this moment, (15) can be rewritten as ∀𝐾 ∈ T
ℎ
; 𝑙 = 𝑥, 𝑦:

q
𝑙
= −

3

|𝐾|
𝑏
11
(HH
𝑙
u +

3

∑

𝑖=1

H
𝑙,𝐵,𝑖

u
(𝑁𝐵,𝑖)

) ,

p
𝑙
= −

3

|𝐾|
𝑏
22
(HH
𝑙
k +
3

∑

𝑖=1

H
𝑙,𝐵,𝑖

k
(𝑁𝐵,𝑖)

) ,

(20)

which is an advantage of LDG method where the auxiliary
variables can be expressed by original variables locally.

As a special case of (20), for the adjacent elements𝐾
𝑖
, 𝑖 =

1, 2, 3, we have

(q
𝑙
)
(𝑁𝐵,𝑖)

= −
3

𝐾𝑖


⋅ 𝑏
11
(HH
(𝑁𝐵,𝑖)

𝑙
u
(𝑁𝐵,𝑖)

+

3

∑

𝑗=1

H
(𝑁𝐵,𝑖)

𝑙,𝐵,𝑗
u
(𝑁𝐵,𝑖)

(𝑁𝐵,𝑗)

) ,

(p
𝑙
)
(𝑁𝐵,𝑖)

= −
3

𝐾𝑖


⋅ 𝑏
22
(HH
(𝑁𝐵,𝑖)

𝑙
k
(𝑁𝐵,𝑖)

+

3

∑

𝑗=1

H
(𝑁𝐵,𝑖)

𝑙,𝐵,𝑗
k
(𝑁𝐵,𝑖)

(𝑁𝐵,𝑗)

) ,

(21)

where 𝑙 = 𝑥, 𝑦 and (𝑁𝐵, 𝑖), 𝑖 = 1, 2, 3, denote the quantities
belonging to 𝐾


𝑠 adjacent elements 𝐾

𝑖
(see Figure 1). Simi-

larly, (𝑁𝐵, 𝑖)
(𝑁𝐵,𝑗)

, 𝑗 = 1, 2, 3, are used to mark the quantities

belonging to the adjacent elements 𝐾
𝑖𝑗
of 𝐾
𝑖
, respectively. In

addition, u
(𝑁𝐵,𝑖)

(𝑁𝐵,𝑗)

= u and k
(𝑁𝐵,𝑖)

(𝑁𝐵,𝑗)

= k when 𝑖 = 𝑗.
Substituting the above equations and (20) into (16), we

derive a system including original variables only:

𝑑w
𝑑𝑡

= −
3

|𝐾|
(Nw +

3

∑

𝑖=1

N
𝑖
w
(𝑁𝐵,𝑖)

+

3

∑

𝑖=1

3

∑

𝑗=1

Ñ
𝑖𝑗
w
(𝑁𝐵,𝑖)

(𝑁𝐵,𝑗)

)

+ F (w) ,

(22)

where

w = (

u
k
) ,

F (w) = (

f (u, k)
g (u, k)

) ,

N = (

N
𝑢

𝑏
12

𝑏
22

NV

𝑏
21

𝑏
11

N
𝑢

NV

),

N
𝑖
= (

N
𝑖,𝑢

𝑏
12

𝑏
22

N
𝑖,V

𝑏
21

𝑏
11

N
𝑖,𝑢

N
𝑖,V

),

Ñ
𝑖𝑗
= (

Ñ
𝑖𝑗,𝑢

𝑏
12

𝑏
22

Ñ
𝑖𝑗,V

𝑏
21

𝑏
11

Ñ
𝑖𝑗,𝑢

Ñ
𝑖𝑗,V

),

𝑖, 𝑗 = 1, 2, 3,

N
𝑢
= G
𝑈
−

3

|𝐾|
𝑏
11
(JJ
𝑥
HH
𝑥
+ JJ
𝑦
HH
𝑦
) ,

NV = G
𝑈
−

3

|𝐾|
𝑏
22
(JJ
𝑥
HH
𝑥
+ JJ
𝑦
HH
𝑦
) ,

N
𝑖,𝑢

= G
𝑢,𝐵,𝑖

−
3

|𝐾|
𝑏
11
(JJ
𝑥
H
𝑥,𝐵,𝑖

+ JJ
𝑦
H
𝑦,𝐵,𝑖

)

−
3

𝐾𝑖


𝑏
11
(J
𝑥,𝐵,𝑖

HH
(𝑁𝐵,𝑖)

𝑥
+ J
𝑦,𝐵,𝑖

HH
(𝑁𝐵,𝑖)

𝑦
) ,

N
𝑖,V = G

𝑢,𝐵,𝑖
−

3

|𝐾|
𝑏
22
(JJ
𝑥
H
𝑥,𝐵,𝑖

+ JJ
𝑦
H
𝑦,𝐵,𝑖

)

−
3

𝐾𝑖


𝑏
22
(J
𝑥,𝐵,𝑖

HH
(𝑁𝐵,𝑖)

𝑥
+ J
𝑦,𝐵,𝑖

HH
(𝑁𝐵,𝑖)

𝑦
) ,

Ñ
𝑖,𝑗,𝑢

= −
3

𝐾𝑖


𝑏
11
(J
𝑥,𝐵,𝑖

H
(𝑁𝐵,𝑖)

𝑥,𝐵,𝑗
+ J
𝑦,𝐵,𝑖

H
(𝑁𝐵,𝑖)

𝑦,𝐵,𝑗
) ,

Ñ
𝑖,𝑗,V = −

3

𝐾𝑖


𝑏
22
(J
𝑥,𝐵,𝑖

H
(𝑁𝐵,𝑖)

𝑥,𝐵,𝑗
+ J
𝑦,𝐵,𝑖

H
(𝑁𝐵,𝑖)

𝑦,𝐵,𝑗
) .

(23)
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2.2.The IIFMethods Based onKrylov Subspace Approximation
for Temporal Discretization. Assembling (22) over all of the
elements inT

ℎ
, we derive a global system of ODEs:

𝑑W
𝑑𝑡

= AW + F (W) , (24)

whereW = (w𝑇
1
,w𝑇
2
, . . . ,w𝑇

𝑁
𝑒

)
𝑇, F(W) = (F(w

1
)
𝑇
, F(w
2
)
𝑇
, . . .,

F(w
𝑁
𝑒

)
𝑇
)
𝑇, w
𝑗
is the degrees of freedom on 𝐾

𝑗
, 𝑗 =

1, 2, . . . , 𝑁
𝑒
, and here 𝑁

𝑒
denotes the number of triangular

elements. The 6𝑁
𝑒
× 6𝑁

𝑒
global matrix A is sparse and

formulated element by element according to (22). Each
element 𝐾 ∈ T

ℎ
contributes to the global matrix A with no

more than ten 6 × 6 block matrices at corresponding six rows
of A.

Then we apply the second-order IIF scheme to system
(24):

W𝑛+1 = eAΔ𝑡 (W𝑛 + Δ𝑡

2
F (W𝑛)) +

Δ𝑡

2
F (W𝑛+1) , (25)

where 𝑛 is the time level, 𝑡
𝑛+1

= 𝑡
𝑛
+ Δ𝑡, andW𝑛 = W(𝑡

𝑛
).

When we compute W𝑛+1, the vector Q = 𝑒
AΔ𝑡

(W𝑛 +
(Δ𝑡/2)F(W𝑛)) is a known quantity related to the earlier
time level and can be computed by the Krylov subspace
approximation shown in [30]. The nonlinear system at 𝑡

𝑛+1

is decoupled from the diffusion term with a simple form:

W𝑛+1 = Q +
Δ𝑡

2
F (W𝑛+1) , (26)

which can be solved element by element. And the 𝑁
𝑒
6 × 6

systems are independent of each other with every system
of the same structure. The local algebraic system on every
element𝐾

𝑗
, 𝑗 = 1, 2, . . . , 𝑁

𝑒
, is of the following form:

R (w𝑛+1
𝑗

) = 0 (27)

with

w𝑛+1
𝑗

= (

u𝑛+1
𝑗

k𝑛+1
𝑗

) =

(
(
(
(
(
(

(

𝑢
𝑛+1

𝑗,1

𝑢
𝑛+1

𝑗,2

𝑢
𝑛+1

𝑗,3

V𝑛+1
𝑗,1

V𝑛+1
𝑗,2

V𝑛+1
𝑗,3

)
)
)
)
)
)

)

,

R (w𝑛+1
𝑗

)

=

(
(
(
(
(
(
(
(
(
(
(

(

𝑢
𝑛+1

𝑗,1
−Q (6 (𝑗 − 1) + 1) −

Δ𝑡

2
𝑓 (𝑢
𝑛+1

𝑗,1
, V𝑛+1
𝑗,1

)

𝑢
𝑛+1

𝑗,2
−Q (6 (𝑗 − 1) + 2) −

Δ𝑡

2
𝑓 (𝑢
𝑛+1

𝑗,2
, V𝑛+1
𝑗,2

)

𝑢
𝑛+1

𝑗,3
−Q (6 (𝑗 − 1) + 3) −

Δ𝑡

2
𝑓 (𝑢
𝑛+1

𝑗,3
, V𝑛+1
𝑗,3

)

V𝑛+1
𝑗,1

−Q (6 (𝑗 − 1) + 4) −
Δ𝑡

2
𝑔 (𝑢
𝑛+1

𝑗,1
, V𝑛+1
𝑗,1

)

V𝑛+1
𝑗,2

−Q (6 (𝑗 − 1) + 5) −
Δ𝑡

2
𝑔 (𝑢
𝑛+1

𝑗,2
, V𝑛+1
𝑗,2

)

V𝑛+1
𝑗,3

−Q (6 (𝑗 − 1) + 6) −
Δ𝑡

2
𝑔 (𝑢
𝑛+1

𝑗,3
, V𝑛+1
𝑗,3

)

)
)
)
)
)
)
)
)
)
)
)

)

.

(28)

The Newton iterative method can be applied to solve the
above system. In the iterations to compute w𝑛+1

𝑗
, we use

the numerical value w𝑛
𝑗
at time 𝑡

𝑛
as the initial guess. The

threshold value for judging Newton iteration can be set small
enough and is taken as 10−13 in the numerical examples.

3. Numerical Experiments

In this section, numerical experiments are presented to
demonstrate the validity and accuracy of the LDG method
with the IIF scheme for solving the reaction-cross-diffusion
system on two-dimensional triangular meshes. Firstly, we
give a test example with exact solutions to manifest the
spatial accuracy of the method.Then we apply the method to
the Brusselator model with cross-diffusion. And numerical
results agree well with those in other references [23, 26]. In
addition, our Krylov IIF method for temporal discretization
reduces the computational cost greatly, and LDGmethod for
spatial discreetization derives the numerical approximations
not only for solutions but also for fluxes at the same time.

All of the numerical examples considered in this section
are subject to no-flux boundary conditions (2).The triangular
partitions used here are Delaunay partitions gotten from
EasyMesh (see Figure 2). And the time step size is taken as

Δ𝑡 = 𝑐𝑓𝑙 ∗ ℎmin, (29)

where ℎmin is the length of the minimum edge in the triangu-
lar partition.

In addition, the auxiliary parameters in the numerical
fluxes (7) and (8) are taken as

𝐶
11

=
�̃�

ℎ
𝑒

,

C
12
⋅ n
𝑒
=
1

2
sign (𝑛

𝑒1
+ 𝑛
𝑒2
) ,

∀𝑒 ∈ 𝜕𝐾 ∩E
ℎ
,

(30)

where ℎ
𝑒
is the length of edge 𝑒; �̃� > 0 is the penalization

parameter and is set to be �̃� = 1 in the following computation.
n
𝑒
= (𝑛
𝑒1
, 𝑛
𝑒2
) is the outward unit normal vector of 𝐾 on 𝑒.

3.1. A Test Problem with Exact Solutions. To validate the spa-
tial accuracy of our method numerically, we firstly consider a
simple auxiliary reaction-diffusion system given in [23].

Example 2. The test reaction-diffusion system with cross-
diffusion is of the following form:

𝜕𝑢

𝜕𝑡
− Δ (𝑏

11
𝑢 + 𝑏
12
V) = 𝑏

12
V,

𝜕V
𝜕𝑡

− Δ (𝑏
21
𝑢 + 𝑏
22
V) = 4𝑏

21
𝑢,

(31)
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Table 1: Numerical results for Example 2 at 𝑇 = 0.5.

𝑁
𝑒

𝑁
𝑛

𝑢 − 𝑢
ℎ

0
Order 𝑢 − 𝑢

ℎ

∞
Order V − V

ℎ

0
Order V − V

ℎ

∞
Order

42 30 2.9159E − 1 — 1.0756E − 1 — 3.9750E − 1 — 1.1964E − 1 —
150 92 1.0714E − 1 1.5449 3.7922E − 2 1.6085 1.1495E − 1 1.9144 4.6267E − 2 1.4659
596 331 2.5577E − 2 2.0136 1.1788E − 2 1.6425 2.8564E − 2 1.9572 1.3543E − 2 1.7271
2392 1261 6.1548E − 3 2.2018 3.2021E − 3 2.0145 6.7407E − 3 2.2320 3.6577E − 3 2.0233
9224 4739 1.5429E − 3 2.0212 8.5707E − 4 1.9255 1.6793E − 3 2.0304 9.7541E − 4 1.9309
36838 18672 3.7359E − 4 1.9233 2.2556E − 4 1.8104 4.0320E − 4 1.9348 2.5540E − 4 1.8173
ℎ CPU (s) q − q

ℎ

0 Order q − q
ℎ

∞ Order p − p
ℎ

0 Order p − p
ℎ

∞ Order
1.8596 0.22 5.5622E − 1 — 1.6628E − 1 — 3.9209E − 1 — 1.2379E − 1 —
0.9727 0.28 1.8244E − 1 1.7200 5.4618E − 2 1.7178 1.9275E − 1 1.0957 7.6123E − 2 0.7502
0.4775 1.34 7.1312E − 2 1.3205 2.6911E − 2 0.9950 7.8795E − 2 1.2575 3.2105E − 2 1.2136
0.2501 9.75 3.1589E − 2 1.2586 1.3518E − 2 1.0643 3.5300E − 2 1.2412 1.5165E − 2 1.1593
0.1261 86.75 1.5204E − 2 1.0683 6.9372E − 3 0.9746 1.7065E − 2 1.0618 7.5730E − 3 1.0145
0.0603 473.50 7.4107E − 3 0.9746 3.3396E − 3 0.9914 8.2970E − 3 0.9780 3.8574E − 3 0.9148

x

y

0 1 2 3 4 5 6
0

1

2

3

4

5

6

(a) Partition for [0, 2𝜋]2 with ℎ = 0.1261
x

y

−10 −5 0 5 10
−10

−5

0

5

10
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Figure 2: Delaunay partitions for square domain in Example 2 (a) and circular domain in Example 4 (b).

defined on square Ω = [0, 2𝜋]
2 and here 𝑏

11
= 𝑏
22

= 1, 𝑏
12

=

1.5, and 𝑏
21

= 0.5. The exact solution is

𝑢 (𝑥, 𝑦, 𝑡) = exp (−4𝑡) (cos (2𝑥) + cos (2𝑦)) ,

V (𝑥, 𝑦, 𝑡) = exp (−𝑡) (cos (𝑥) + cos (𝑦)) ,
(32)

from which we can derive the initial conditions.

The simulation for Example 2 is carried up to 𝑇 = 0.5

with 𝑐𝑓𝑙 = 0.05. The errors in 𝐿
2-norm and 𝐿

∞-norm
are measured for both solutions and the fluxes on various
triangular meshes. And the results are displayed in Table 1,
where𝑁

𝑛
denotes the number of triangular vertices. We can

observe optimal convergence rates of 𝑂(ℎ2) for solutions 𝑢, V
in both 𝐿

2-norm and 𝐿∞-norm and suboptimal convergence

rates of 𝑂(ℎ) for fluxes q, p. These rates are consistent with
theoretical results for the LDG method [35].

Moreover, Figure 3 demonstrates graphs of numerical
solutions 𝑢

ℎ
(left) and V

ℎ
(right) for this example, which are

derived under the Delaunay partition shown in Figure 2(a).
In addition, the numerical approximates for fluxes q

ℎ
(top)

and p
ℎ
(bottom) are plotted in Figure 4.

3.2. Application to the Brusselator Model. In this subsection,
we apply the LDG method coupled with the IIF scheme to
solve the Brusselator model with cross-diffusion:

𝜕𝑢

𝜕𝑡
− Δ (𝑏

11
𝑢 + 𝑏
12
V) = − (𝛽 + 1) 𝑢 + 𝑢

2V + 𝛼,

𝜕V
𝜕𝑡

− Δ (𝑏
21
𝑢 + 𝑏
22
V) = 𝛽𝑢 − 𝑢

2V,
(33)
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Figure 3: Graphs of numerical solutions 𝑢
ℎ
and V

ℎ
at 𝑇 = 0.5 under the partition shown in Figure 2(a).
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Figure 4: Numerical approximates for fluxes q (top) and p (bottom) at 𝑇 = 0.5 under the partition shown in Figure 2(a).
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with the initial conditions chosen as small random perturba-
tions of the equilibrium:

𝑢 (x, 0) = 5.8 +
1

3
rand (x) ,

V (x, 0) = 0.13 +
1

10
rand (x) ,

(34)

where x = (𝑥, 𝑦) ∈ Ω, and rand: Ω → [0, 1] is a random
function in Fortran. In the following simulations, we take Ω
as the square domain Ω = [0, 20]

2 and circular domain Ω =

{(𝑥, 𝑦) | 𝑥
2
+ 𝑦
2
≤ 10
2
}, respectively.

Similar to [23], we set the parameters in the Brusselator
model as

𝑏
11

= 0.4,

𝑏
22

= 2,

𝑏
21

= 0.02,

𝛼 = 6,

𝛽 = 1,

(35)

with 𝑏
12

= 24 and 32, respectively, based on which patterns
are expected to appear. Actually, according toTheorem 2.3 in
[23], the choice (35) is sufficient for the positive equilibrium
point being linearly unstable and 𝑏

12
is taken as the Turing

bifurcation parameter. Then the threshold 𝑏
12

= 22.2665 is
obtained from (2.5) in [23]. Furthermore, it is observed that
the increase of 𝑏

12
over the threshold with 𝑏

12
= 24 and

𝑏
12

= 32 yields the formation of spotted and labyrinthine
patterns.

Example 3. We solve the Brusselator model (33)-(34) on the
square domain Ω = [0, 20]

2. In the computation, the square
is divided into 16370 triangles and 8354 vertices, and now
ℎmin = 0.1492; mesh size ℎ = 0.2930. The time step size is
taken as (29) with 𝑐𝑓𝑙 = 0.05.

Different patterns will be obtained by selecting two sets
of values for parameters 𝑏

12
. The first set (𝑏

12
= 24) leads to

a spotted pattern as shown in Figure 5. It presents numerical
approximations for solutions 𝑢 (left) and V (right) at different
values of final time𝑇 = 1,𝑇 = 10, and𝑇 = 25, respectively. In
addition, our method derives the approximations for fluxes
q = 𝑏

11
∇𝑢 and p = 𝑏

22
∇V at the same time, and the graphs

for q
ℎ
are plotted in Figure 6. The second set (𝑏

12
= 32)

generates a labyrinthine pattern (see Figure 7).The numerical
approximations for fluxes q and p can also be obtained, and
here we give only graphs of q

ℎ
in Figure 8. We observe a

larger amplitude of the patterns (higher gradients) for both
species.

Simulations for these two sets of parameters have also
been conducted in [23] with finite volume methods and in
[26] with two kinds of finite element methods. We observe
that the patterns obtained by our method agree well with
those in [23, 26]. Meanwhile our method possesses its own
advantages. By using the LDG method for spatial discretiza-
tion, our method derives not only numerical solutions as the

references do but also numerical approximations for fluxes.
And it is easy to derive high-order spatial approximations
which is difficult for finite volume schemes. Furthermore,
our method reduces the computational cost greatly and CPU
time for this simulation carried up to 𝑇 = 25 is 2632 s
for the first set (𝑏

12
= 24) and 2665 s for the second set

(𝑏
12

= 32). The reason is that, by employing the IIF scheme
for temporal discretization, our method relaxes the strict
time step restriction that is necessary for explicit schemes
including the fourth-order exponential time differencing
scheme used in [26] and allows us to compute element by
element and avoids solving a global system of nonlinear
algebraic equations as the backward difference advancing
scheme applied in [23] does.

Example 4. We compute the Brusselator model (33)-(34) on
the circular domain Ω = {(𝑥, 𝑦) | 𝑥

2
+ 𝑦
2

≤ 10
2
}. In

the computation, the circular domain is divided into 4794

triangles and 2478 vertices, and now ℎmin = 0.2405; mesh
size ℎ = 0.4962 (see Figure 2(b)). The time step size is taken
as (29) with 𝑐𝑓𝑙 = 0.03.

From the numerical simulations in Example 3, we have
found that the patterns of numerical solutions 𝑢

ℎ
and V
ℎ
are

always of the same type. Consequently, we can restrict our
analysis of pattern formation to 𝑢

ℎ
.

Figure 9 exhibits graphs of numerical solutions 𝑢
ℎ
at 𝑇 =

1, 𝑇 = 10, and 𝑇 = 50 for 𝑏
12

= 24 (left) and 𝑏
12

= 32 (right),
respectively, which also agree well with those in [23]. And the
𝑥-direction components of q

ℎ
at 𝑇 = 1, 𝑇 = 10, and 𝑇 = 50

for 𝑏
12

= 24 (left) and 𝑏
12

= 32 (right) are plotted in Figure 10.
Comparedwith Example 3, we observe that the same patterns
can be obtained on more complex geometry with larger final
time.

And it is alsoworthy to point out that ourmethod reduces
the computational cost greatly and CPU time for this case
carried up to 𝑇 = 50 is 1653 s for the first set (𝑏

12
= 24) and

1604 s for the second set (𝑏
12

= 32).

4. Conclusions

In this paper, we have developed the LDG method, coupled
with the Krylov IIF time discretization, for solving reaction-
cross-diffusion systems. By using LDG methods, we can
obtain not only numerical solutions but also approximations
for fluxes at the same time. Furthermore, another important
property of LDGmethod is that the computation can proceed
element by element and can also be remained, which benefits
from applying the IIF method for temporal discretization.
And it also relaxes the strict time step restriction that is
necessary for explicit schemes.

Experimental convergence rates were obtained for the
LDG approximations by a test system with exact solutions,
which shows optimal order for the solutions and suboptimal
order for the fluxes in both 𝐿

2-norm and 𝐿
∞-norm, just as

the theoretical analysis in [35]. Then we conduct numerical
simulations for the Brusselator system modelling an autocat-
alytic chemical reaction to verify the expected results in terms
of behavior of the generated patterns.
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Figure 5: The time evolution of numerical solutions 𝑢
ℎ
(left) and V

ℎ
(right) on the square domain with 𝑏

12
= 24.
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(e) 𝑥-direction component of qℎ at 𝑇 = 25
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Figure 6: The time evolution of numerical approximates for fluxes q on the square domain with 𝑏
12
= 24.
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Figure 7: The time evolution of numerical solutions 𝑢
ℎ
(left) and V
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(right) on the square domain with 𝑏
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= 32.
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Figure 8: The time evolution of numerical approximates for fluxes q on the square domain with 𝑏
12
= 32.
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(e) 𝑢ℎ at 𝑇 = 50 (𝑏12 = 24)
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Figure 9: The time evolution of 𝑢
ℎ
for 𝑏
12
= 24 (left) and 𝑏

12
= 32 (right) on the circular domain.
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Figure 10: Graphs of 𝑥-direction component of q
ℎ
for 𝑏
12
= 24 (left) and 𝑏

12
= 32 (right) on the circular domain.
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equations in nonequilibrium thermodynamics including ther-
mal and electrical effects,” Journal de Mathématiques Pures et
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priori error analysis of the local discontinuousGalerkinmethod
for elliptic problems,” SIAM Journal on Numerical Analysis, vol.
38, no. 5, pp. 1676–1706, 2000.

[36] B. Q. Li, Discontinuous Finite Elements in Fluid Dynamics
and Heat Transfer, Computational Fluid and Solid Mechanics,
Springer, Berlin, Germany, 2006.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


