60 research outputs found

    Identification of a laccase Glac15 from Ganoderma lucidum 77002 and its application in bioethanol production

    Get PDF
    Background Laccases have potential applications in detoxification of lignocellulosic biomass after thermochemical pretreatment and production of value-added products or biofuels from renewable biomass. However, their application in large-scale industrial and environmental processes has been severely thwarted by the high cost of commercial laccases. Therefore, it is necessary to identify new laccases with lower cost but higher activity to detoxify lignocellulosic hydrolysates and better efficiency to produce biofuels such as bioethanol. Laccases from Ganoderma lucidum represent proper candidates in processing of lignocellulosic biomass. Results G. lucidum 77002 produces three laccase isoenzymes with a total laccase activity of 141.1 U/mL within 6 days when using wheat bran and peanut powder as energy sources in liquid culture medium. A new isoenzyme named Glac15 was identified, purified, and characterized. Glac15 possesses an optimum pH of 4.5 to 5.0 and a temperature range of 45°C to 55°C for the substrates tested. It was stable at pH values ranging from 5.0 to 7.0 and temperatures lower than 55°C, with more than 80% activity retained after incubation for 2 h. When used in bioethanol production process, 0.05 U/mL Glac15 removed 84% of the phenolic compounds in prehydrolysate, and the yeast biomass reached 11.81 (optimal density at 600 nm (OD600)), compared to no growth in the untreated one. Addition of Glac15 before cellulase hydrolysis had no significant effect on glucose recovery. However, ethanol yield were improved in samples treated with laccases compared to that in control samples. The final ethanol concentration of 9.74, 10.05, 10.11, and 10.81 g/L were obtained from samples containing only solid content, solid content treated with Glac15, solid content containing 50% prehydrolysate, and solid content containing 50% prehydrolysate treated with Glac15, respectively. Conclusions The G. lucidum laccase Glac15 has potentials in bioethanol production industry

    Wogonin induces cell cycle arrest and erythroid differentiation in imatinib-resistant K562 cells and primary CML cells

    Get PDF
    Wogonin, a flavonoid derived from Scutellaria baicalensis Georgi, has been demonstrated to be highly effective in treating hematologic malignancies. In this study, we investigated the anticancer effects of wogonin on K562 cells, K562 imatinib-resistant cells, and primary patient-derived CML cells. Wogonin up-regulated transcription factor GATA-1 and enhanced binding between GATA-1 and FOG-1, thereby increasing expression of erythroid-differentiation genes. Wogonin also up-regulated the expression of p21 and induced cell cycle arrest. Studies employing benzidine staining and analyses of cell surface markers glycophorin A (GPA) and CD71 indicated that wogonin promoted differentiation of K562, imatinib-resistant K562, and primary patient-derived CML cells. Wogonin also enhanced binding between GATA-1 and MEK, resulting in inhibition of the growth of CML cells. Additionally, in vivo studies showed that wogonin decreased the number of CML cells and prolonged survival of NOD/SCID mice injected with K562 and imatinib-resistant K562 cells. These data suggested that wogonin induces cycle arrest and erythroid differentiation in vitro and inhibits proliferation in vivo

    Epothilone B Benefits Nigral Dopaminergic Neurons by Attenuating Microglia Activation in the 6-Hydroxydopamine Lesion Mouse Model of Parkinson’s Disease

    Get PDF
    Parkinson’s disease (PD) is characterized by loss of dopamine (DA) neurons in the substantia nigra pars compacta (SNc) and a subsequent reduction in striatal DA levels. Recent studies have shown that systemic administration of subtoxic doses of epothilone B (EpoB), a microtubule stabilizing agent, enhances axonal regeneration. However, the underlying alterations in cellular mechanisms remain undetermined. In the present study, we investigated the neuroprotective effects of EpoB on DA neurons in mouse model of PD induced by 6-hydroxyDA (6-OHDA) and in vitro. The results indicated that EpoB improved behavioral deficits, protected the nigrostriatal dopaminergic projections and restored DA level in the striatum of mice exposed to 6-OHDA. Meanwhile, EpoB attenuated microglia activation in the SNc of PD mice. Furthermore, EpoB treatment ameliorated 6-OHDA induced cytotoxicity to MN9D dopaminergic cells in a co-culture transwell system of BV2/MN9D cells, and redistributed the cytoskeleton of microglial BV2 and caused the morphological transition, inhibited the polarization to the M1 phenotype by suppressing expression of pro-inflammatory factors including interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α. Overall, our study suggested that EpoB treatment protects nigral DA neurons and projections through limiting the cytotoxicity of activated microglia in 6-OHDA lesioned mice

    DNA Methylation and Gene Expression of Matrix Metalloproteinase 9 Gene in Deficit and Non-deficit Schizophrenia

    Get PDF
    The biological pathology of deficit schizophrenia (DS) remains unclear. Matrix metalloproteinase 9 (MMP9) might be associated with neural plasticity and glutamate regulation, involved in schizophrenia pathogenesis. This study explores gene expression and DNA methylation of MMP9 in peripheral blood mononuclear cells (PBMCs) and their relationship with clinical symptoms in DS and non-deficit schizophrenia (NDS). Pyrosequencing was used to determine DNA methylation at CpG sites in exon 4 and exon 5 of MMP9 in 51 DS patients, 53 NDS patients and 50 healthy subjects (HC). RT-qPCR was used to detect MMP9 expression. Clinical symptoms were assessed by BPRS, SANS and SAPS scales. MMP9 expression in PBMCs was significantly higher in DS than NDS and HC subjects. Compared to NDS patients, DS patients had significantly lower DNA methylation at individual CpG sites in exon 4 and exon 5 of MMP9. Correlation analysis showed that DNA methylation in exon 4 was negatively correlated with gene expression in DS group. Positive correlation was found between MMP9 expression and negative symptoms in total schizophrenic patients. The social amotivation factor of SANS and negative syndrome of BPRS was negatively correlated with DNA methylation of CpG5-1 in DS patients but not in NDS patients. DS patients showed a specific abnormality of peripheral MMP9 expression and DNA methylation, indicating a pathological mechanism underlying DS as a specific subgroup of schizophrenia

    MiR-770-5p inhibits cisplatin chemoresistance in human ovarian cancer by targeting ERCC2

    Get PDF
    In this study, we examined the role of the miRNA miR-770-5p in cisplatin chemotherapy resistance in ovarian cancer (OVC) patients. miR-770-5p expression was reduced in platinum-resistant patients. Using a 6.128-fold in expression as the cutoff value, miR-770-5p expression served as a prognostic biomarker and predicted the response to cisplatin treatment and survival among OVC patients. Overexpression of miR-770-5p in vitro reduced survival in chemoresistant cell lines after cisplatin treatment. ERCC2, a target gene of miR-770-5p that participates in the NER system, was negatively regulated by miR-770-5p. siRNA-mediated silencing of ERCC2 reversed the inhibition of apoptosis resulting from miR-770-5p downreglation in A2780S cells. A comet assay confirmed that this restoration of cisplatin chemosensitivity was due to the inhibition of DNA repair. These findings suggest that endogenous miR-770-5p may function as an anti-oncogene and promote chemosensitivity in OVC, at least in part by downregulating ERCC2. miR-770-5p may therefore be a useful biomarker for predicting chemosensitivity to cisplatin in OVC patients and improve the selection of effective, more personalized, treatment strategies

    Orientationally ordered silicon nanocrystal cuboctahedra in superlattices

    Get PDF
    This is an open access article published under an ACS AuthorChoice License. See Standard ACS AuthorChoice/Editors' Choice Usage Agreement - https://pubs.acs.org/page/policy/authorchoice_termsofuse.htmlUniform silicon nanocrystals were synthesized with cuboctahedral shape and passivated with 1-dodecene capping ligands. Transmission electron microscopy, electron diffraction, and grazing incidence wide-angle and small-angle X-ray scattering show that these soft cuboctahedra assemble into face-centered cubic superlattices with orientational order. The preferred nanocrystal orientation was found to depend on the orientation of the superlattices on the substrate, indicating that the interactions with the substrate and assembly kinetics can influence the orientation of faceted nanocrystals in superlattices

    Effect of chemokine CXCL14 on in vitro

    No full text
    • …
    corecore