44,938 research outputs found
Recommended from our members
Study on Actuator Line Modeling of Two NREL 5-MW Wind Turbine Wakes
The wind turbine wakes impact the efficiency and lifespan of the wind farm. Therefore, to improve the wind plant performance, research on wind plant control is essential. The actuator line model (ALM) is proposed to simulate the wind turbine efficiently. This research investigates the National Renewable Energy Laboratory 5 Million Watts (NREL 5-MW) wind turbine wakes with Open Field Operation and Manipulation (OpenFOAM) using ALM. Firstly, a single NREL 5-MW turbine is simulated. The comparison of the power and thrust with Fatigue, Aerodynamics, Structures, and Turbulence (FAST) shows a good agreement below the rated wind speed. The information relating to wind turbine wakes is given in detail. The top working status is proved at the wind speed of 8 m/s and the downstream distance of more than 5 rotor diameters (5D). Secondly, another case with two NREL 5-MW wind turbines aligned is also carried out, in which 7D is validated as the optimum distance between the two turbines. The result also shows that the upstream wind turbine has an obvious influence on the downstream one
Performance of Cross-layer Design with Multiple Outdated Estimates in Multiuser MIMO System
By combining adaptive modulation (AM) and automatic repeat request (ARQ) protocol as well as user scheduling, the cross-layer design scheme of multiuser MIMO system with imperfect feedback is presented, and multiple outdated estimates method is proposed to improve the system performance. Based on this method and imperfect feedback information, the closed-form expressions of spectral efficiency (SE) and packet error rate (PER) of the system subject to the target PER constraint are respectively derived. With these expressions, the system performance can be effectively evaluated. To mitigate the effect of delayed feedback, the variable thresholds (VTs) are also derived by means of the maximum a posteriori method, and these VTs include the conventional fixed thresholds (FTs) as special cases. Simulation results show that the theoretical SE and PER are in good agreement with the corresponding simulation. The proposed CLD scheme with multiple estimates can obtain higher SE than the existing CLD scheme with single estimate, especially for large delay. Moreover, the CLD scheme with VTs outperforms that with conventional FTs
Improved three-dimensional color-gradient lattice Boltzmann model for immiscible multiphase flows
In this paper, an improved three-dimensional color-gradient lattice Boltzmann
(LB) model is proposed for simulating immiscible multiphase flows. Compared
with the previous three-dimensional color-gradient LB models, which suffer from
the lack of Galilean invariance and considerable numerical errors in many cases
owing to the error terms in the recovered macroscopic equations, the present
model eliminates the error terms and therefore improves the numerical accuracy
and enhances the Galilean invariance. To validate the proposed model, numerical
simulation are performed. First, the test of a moving droplet in a uniform flow
field is employed to verify the Galilean invariance of the improved model.
Subsequently, numerical simulations are carried out for the layered two-phase
flow and three-dimensional Rayleigh-Taylor instability. It is shown that, using
the improved model, the numerical accuracy can be significantly improved in
comparison with the color-gradient LB model without the improvements. Finally,
the capability of the improved color-gradient LB model for simulating dynamic
multiphase flows at a relatively large density ratio is demonstrated via the
simulation of droplet impact on a solid surface.Comment: 9 Figure
Out of plane effect on the superconductivity of Sr2-xBaxCuO3+y with Tc up to 98K
A series of new Sr2-xBaxCuO3+y (0 x 0.6) superconductors were prepared using
high-pressure and high-temperature synthesis. A Rietveld refinement based on
powder x-ray diffraction confirms that the superconductors crystallize in the
K2NiF4-type structure of a space group I4/mmm similar to that of La2CuO4 but
with partially occupied apical oxygen sites. It is found that the
superconducting transition temperature Tc of this Ba substituted Sr2CuO3+y
superconductor with constant carrier doping level, i.e., constant d, is
controlled not only by order/disorder of apical-O atoms but also by Ba content.
Tcmax =98 K is achieved in the material with x=0.6 that reaches the record
value of Tc among the single-layer copper oxide superconductors, and is higher
than Tc=95K of Sr2CuO3+y with optimally ordered apical-O atoms. There is
Sr-site disorder in Sr2-xBaxCuO3+y which might lead to a reduction of Tc. The
result indicates that another effect surpasses the disorder effect that is
related either to the increased in-plane Cu-O bond length or to elongated
apical-O distance due to Ba substitution with larger cation size. The present
experiment demonstrates that the optimization of local geometry out of the Cu-O
plane can dramatically enhance Tc in the cuprate superconductors.Comment: 23 Pages, 1 Table, 5 Figure
Suppressing longitudinal double-layer oscillations by using elliptically polarized laser pulses in the hole-boring radiation pressure acceleration regime
It is shown that well collimated mono-energetic ion beams with a large
particle number can be generated in the hole-boring radiation pressure
acceleration regime by using an elliptically polarized laser pulse with
appropriate theoretically determined laser polarization ratio. Due to the
effect, the double-layer charge separation region is
imbued with hot electrons that prevent ion pileup, thus suppressing the
double-layer oscillations. The proposed mechanism is well confirmed by
Particle-in-Cell simulations, and after suppressing the longitudinal
double-layer oscillations, the ion beams driven by the elliptically polarized
lasers own much better energy spectrum than those by circularly polarized
lasers.Comment: 6 pages, 5 figures, Phys. Plasmas (2013) accepte
- …