4,516 research outputs found

    Near-Boundary and Bulk Regions of a Semi-Infinite Two-Dimensional Heisenberg Antiferromagnet

    Full text link
    Using the spin-wave approximation elementary excitations of a semi-infinite two-dimensional S=12S=\frac12 Heisenberg antiferromagnet are considered. The spectrum consists of bulk modes -- standing spin waves and a quasi-one-dimensional mode of boundary spin waves. These latter excitations eject bulk modes from two boundary rows of sites, thereby dividing the antiferromagnet into two regions with different dominant excitations. As a result absolute values of nearest-neighbor spin correlations on the edge exceed the bulk value.Comment: 8 pages, 3 figure

    The t-J model on a semi-infinite lattice

    Full text link
    The hole spectral function of the t-J model on a two-dimensional semi-infinite lattice is calculated using the spin-wave and noncrossing approximations. In the case of small hole concentration and strong correlations, t≫Jt\gg J, several near-boundary site rows appear to be depleted of holes. The reason for this depletion is a deformation of the magnon cloud, which surrounds the hole, near the boundary. The hole depletion in the boundary region leads to a more complicated spectral function in the boundary row in comparison with its bulk shape.Comment: 8 pages, 5 figure

    Spin current injection by intersubband transitions in quantum wells

    Full text link
    We show that a pure spin current can be injected in quantum wells by the absorption of linearly polarized infrared radiation, leading to transitions between subbands. The magnitude and the direction of the spin current depend on the Dresselhaus and Rashba spin-orbit coupling constants and light frequency and, therefore, can be manipulated by changing the light frequency and/or applying an external bias across the quantum well. The injected spin current should be observable either as a voltage generated via the anomalous spin-Hall effect, or by spatially resolved pump-probe optical spectroscopy.Comment: minor changes, short version publishe

    Piezoelectric mechanism of orientation of a bilayer Wigner crystal in a GaAs matrix

    Full text link
    A mechanism for orientation of bilayer classical Wigner crystals in a piezoelectric medium is considered. For the GaAs system the piezoelectric correction to the electrostatic interaction between electrons is calculated. It is shown that taking into account the correction due to the piezoelectric effect leads to a dependence of the total energy of the electron crystal on its orientation with respect to the crystallographic axes of the surrounding matrix. A generalization of Ewald's method is obtained for calculating the anisotropic interaction between electrons in a Wigner crystal. The method is used to calculate the energy of bilayer Wigner crystals in electron layers parallel to the crystallographic planes (001), (0-11), and (111) as a function of their orientation and the distance between layers, and the energetically most favorable orientation for all types of electron lattices in a bilayer system is found. It is shown that phase transitions between structures with different lattice symmetry in a Wigner crystal can be accompanied by a change of its orientation.Comment: 11 pages, 4 eps figures include

    Drift-Diffusion Approach to Spin-Polarized Transport

    Full text link
    We develop a drift-diffusion equation that describes electron spin polarization density in two-dimensional electron systems. In our approach, superpositions of spin-up and spin-down states are taken into account, what distinguishes our model from the traditional two-component drift-diffusion approximation. The Dresselhaus and Rashba spin-orbit coupling mechanisms are incorporated into consideration, as well as an applied electric field. The derived equation is applied to the modelling of relaxation of homogeneous spin polarization. Our results are consistent with previous studies

    Dynamic spin susceptibility in the t-J model

    Full text link
    A relaxation-function theory for the dynamic spin susceptibility in the tt--JJ model is presented. By a sum-rule-conserving generalized mean-field approximation (GMFA), the two-spin correlation functions of arbitrary range, the staggered magnetization, the uniform static susceptibility, and the antiferromagnetic correlation length are calculated in a wide region of hole doping and temperaturs. A good agreement with available exact diagonalization (ED) data is found. The correlation length is in reasonable agreement with neutron-scattering experiments on La_{2-\delta}Sr_\delta)CuO_4. Going beyond the GMFA, the self-energy is calculated in the mode-coupling approximation. The spin dynamics at arbitrary frequencies and wave vectors is studied for various temperatures and hole doping. At low doping a spin-wave-type behavior is found as in the Heisenberg model, while at higher doping a strong damping caused by hole hopping occurs, and a relaxation-type spin dynamics is observed in agreement with the ED results. The local spin susceptibility and its (\omega/T) scaling behavior are calculated in a reasonable agreement with experimental and ED data.Comment: 13 pages, 14 figure

    A virtual intersubband spin-flip spin-orbit coupling induced spin relaxation in GaAs (110) quantum wells

    Full text link
    A spin relaxation mechanism is proposed based on a second-order spin-flip intersubband spin-orbit coupling together with the spin-conserving scattering. The corresponding spin relaxation time is calculated via the Fermi golden rule. It is shown that this mechanism is important in symmetric GaAs (110) quantum wells with high impurity density. The dependences of the spin relaxation time on electron density, temperature and well width are studied with the underlying physics analyzed.Comment: 4+ pages, 4 figures, to be published in Solid Stat. Commu

    Robust to impurity-scattering spin Hall effect in two-dimensional electron gas

    Full text link
    We propose a mechanism of spin Hall effect in two-dimensional electron gas with spatially random Rashba spin-orbit interaction. The calculations based on the Kubo formalism and kinetic equation show that in contrast to the constant spin-orbit coupling, spin Hall conductivity in the random spin-orbit field is not totally suppressed by the potential impurity scattering. Even if the regular contribution is removed by the vertex corrections, the terms we consider, remain. Therefore, the intrinsic spin-Hall effect exists being, however, non-universal.Comment: 4+ pages, 2 figure

    Physical Limits of the ballistic and non-ballistic Spin-Field-Effect Transistor: Spin Dynamics in Remote Doped Structures

    Get PDF
    We investigate the spin dynamics and relaxation in remotely-doped two dimensional electron systems where the dopants lead to random fluctuations of the Rashba spin-orbit coupling. Due to the resulting random spin precession, the spin relaxation time is limited by the strength and spatial scale of the random contribution to the spin-orbit coupling. We concentrate on the role of the randomness for two systems where the direction of the spin-orbit field does not depend on the electron momentum: the spin field-effect transistor with balanced Rashba and Dresselhaus couplings and the (011) quantum well. Both of these systems are considered as promising for the spintronics applications because of the suppression of the Dyakonov-Perel' mechanism there makes the realization of a spin field effect transistor in the diffusive regime possible. We demonstrate that the spin relaxation through the randomness of spin-orbit coupling imposes important physical limitations on the operational properties of these devices.Comment: 10 pages, 4 figure
    • …
    corecore