118 research outputs found

    The determination of dark adaptation time using electroretinography in conscious Miniature Schnauzer dogs

    Get PDF
    The optimal dark adaptation time of electroretinograms (ERG's) performed on conscious dogs were determined using a commercially available ERG unit with a contact lens electrode and a built-in light source (LED-electrode). The ERG recordings were performed on nine healthy Miniature Schnauzer dogs. The bilateral ERG's at seven different dark adaptation times at an intensity of 2.5 cd·s/m2 was performed. Signal averaging (4 flashes of light stimuli) was adopted to reduce electrophysiologic noise. As the dark adaptation time increased, a significant increase in the mean a-wave amplitudes was observed in comparison to base-line levels up to 10 min (p < 0.05). Thereafter, no significant differences in amplitude occured over the dark adaptation time. Moreover, at this time the mean amplitude was 60.30 ± 18.47 ”V. However, no significant changes were observed for the implicit times of the a-wave. The implicit times and amplitude of the b-wave increased significantly up to 20 min of dark adaptation (p < 0.05). Beyond this time, the mean b-wave amplitudes was 132.92 ± 17.79 ”V. The results of the present study demonstrate that, the optimal dark adaptation time when performing ERG's, should be at least 20 min in conscious Miniature Schnauzer dogs

    Recent Trend in the Incidence of Premalignant and Malignant Skin Lesions in Korea between 1991 and 2006

    Get PDF
    We evaluated the recent trend in the incidence of premalignant and malignant skin lesions between 1991 and 2006. Among 571,057 newly registered dermatology out-patients from our 8 affiliated university hospitals, 2,598 were diagnosed with a premalignant (899, 0.16%) or malignant skin lesions (1,699, 0.30%). Of 899 premalignant cases, 71.2% were actinic keratosis (AK), and 24.6% were Bowen's disease. Of 1,699 malignant cases, 46.2% were basal cell carcinoma, followed by squamous cell carcinoma (19.1%) and melanoma (7.1%). This 16-yr survey was divided equally into two time periods to compare the incidence of premalignant and malignant skin lesions at different time settings. Between 1991 and 1998, the incidence of cutaneous premalignancy was 0.10% which doubled during 1999-2006. For cutaneous malignancy, the incidence was 0.25% during 1991-1998 and 0.34% in 1999-2006. Incidence of AK among the new outpatients was 0.07% in 1991-1998 which staggered up to 0.15% in 1999-2006. These findings show an increase of both premalignant and malignant skin lesions, AK in particular in the dermatology outpatient-based incidence

    Combined inhibition of Bcl-2 family members and YAP induces synthetic lethality in metastatic gastric cancer with RASA1 and NF2 deficiency

    Get PDF
    Background Targetable molecular drivers of gastric cancer (GC) metastasis remain largely unidentified, leading to limited targeted therapy options for advanced GC. We aimed to identify molecular drivers for metastasis and devise corresponding therapeutic strategies. Methods We performed an unbiased in vivo genome-wide CRISPR/Cas9 knockout (KO) screening in peritoneal dissemination using genetically engineered GC mouse models. Candidate genes were validated through in vivo transplantation assays using KO cells. We analyzed target expression patterns in GC clinical samples using immunohistochemistry. The functional contributions of target genes were studied through knockdown, KO, and overexpression approaches in tumorsphere and organoid assays. Small chemical inhibitors against Bcl-2 members and YAP were tested in vitro and in vivo. Results We identified Nf2 and Rasa1 as metastasis-suppressing genes through the screening. Clinically, RASA1 mutations along with low NF2 expression define a distinct molecular subtype of metastatic GC exhibiting aggressive traits. NF2 and RASA1 deficiency increased in vivo metastasis and in vitro tumorsphere formation by synergistically amplifying Wnt and YAP signaling in cancer stem cells (CSCs). NF2 deficiency enhanced Bcl-2-mediated Wnt signaling, conferring resistance to YAP inhibition in CSCs. This resistance was counteracted via synthetic lethality achieved by simultaneous inhibition of YAP and Bcl-2. RASA1 deficiency amplified the Wnt pathway via Bcl-xL, contributing to cancer stemness. RASA1 mutation created vulnerability to Bcl-xL inhibition, but the additional NF2 deletion conferred resistance to Bcl-xL inhibition due to YAP activation. The combined inhibition of Bcl-xL and YAP synergistically suppressed cancer stemness and in vivo metastasis in RASA1 and NF2 co-deficiency. Conclusion Our research unveils the intricate interplay between YAP and Bcl-2 family members, which can lead to synthetic lethality, offering a potential strategy to overcome drug resistance. Importantly, our findings support a personalized medicine approach where combined therapy targeting YAP and Bcl-2, tailored to NF2 and RASA1 status, could effectively manage metastatic GC.This research was supported by grants of the National Research Foundation (NRF) funded by the Korean government (NRF-RS-2023–00208984, NRF-2021M3H9A1030260, NRF-2021R1F1A1051220, NRF-2016M3A9D5A01952416)

    Association between cord blood 25-hydroxyvitamin D concentrations and respiratory tract infections in the first 6 months of age in a Korean population: a birth cohort study (COCOA)

    Get PDF
    PurposePrevious studies suggest that the concentration of 25-hydroxyvitamin D [25(OH)D] in cord blood may show an inverse association with respiratory tract infections (RTI) during childhood. The aim of the present study was to examine the influence of 25(OH)D concentrations in cord blood on infant RTI in a Korean birth cohort.MethodsThe levels of 25(OH)D in cord blood obtained from 525 Korean newborns in the prospective COhort for Childhood Origin of Asthma and allergic diseases were examined. The primary outcome variable of interest was the prevalence of RTI at 6-month follow-up, as diagnosed by pediatricians and pediatric allergy and pulmonology specialists. RTI included acute nasopharyngitis, rhinosinusitis, otitis media, croup, tracheobronchitis, bronchiolitis, and pneumonia.ResultsThe median concentration of 25(OH)D in cord blood was 32.0 nmol/L (interquartile range, 21.4 to 53.2). One hundred and eighty neonates (34.3%) showed 25(OH)D concentrations less than 25.0 nmol/L, 292 (55.6%) showed 25(OH)D concentrations of 25.0-74.9 nmol/L, and 53 (10.1%) showed concentrations of ≄75.0 nmol/L. Adjusting for the season of birth, multivitamin intake during pregnancy, and exposure to passive smoking during pregnancy, 25(OH)D concentrations showed an inverse association with the risk of acquiring acute nasopharyngitis by 6 months of age (P for trend=0.0004).ConclusionThe results show that 89.9% of healthy newborns in Korea are born with vitamin D insufficiency or deficiency (55.6% and 34.3%, respectively). Cord blood vitamin D insufficiency or deficiency in healthy neonates is associated with an increased risk of acute nasopharyngitis by 6 months of age. More time spent outdoors and more intensified vitamin D supplementation for pregnant women may be needed to prevent the onset of acute nasopharyngitis in infants

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Long-range angular correlations on the near and away side in p&#8211;Pb collisions at

    Get PDF

    Growth and Developmental Control in the Model and Pathogenic Aspergilli

    No full text

    Clozapine Induced Neuroleptic Malignant Syndrome

    No full text
    Neuroleptic malignant syndrome is a rare, but potentially life-threatening adverse event associated with the use of neuroleptic agents. We describe the case of a 47-year-old schizophrenic woman who was treated with clozapine for years. The patient developed acute renal failure with pulmonary edema, and underwent mechanical ventilation and hemodialysis

    Novel in-capsule synthesis of metal–organic framework for innovative carbon dioxide capture system

    No full text
    Metal-Organic Frameworks (MOFs) have been developed as solid sorbents for CO2 capture applications and their properties can be controlled by tuning the chemical blocks of their crystalline units. A number of MOFs (e.g., HKUST-1) have been developed but the question remains how to deploy them for gas–solid contact. Unfortunately, the direct use of MOFs as nanocrystals would lead to serious problems and risks. Here, for the first time, we report a novel MOF-based hybrid sorbent that is produced via an innovative in-situ microencapsulated synthesis. Using a custom-made double capillary microfluidic assembly, double emulsions of the MOF precursor solutions and UV-curable silicone shell fluid are produced. Subsequently, HKUST-1 MOF is successfully synthesized within the droplets enclosed in the gas permeable microcapsules. The developed MOF-bearing microcapsules uniquely allow the deployment of functional nanocrystals without the challenge of handling ultrafine particles, and further, can selectively reject undesired compounds to protect encapsulated MOFs
    • 

    corecore