214 research outputs found

    The Photonic Band theory and the negative refraction experiment of metallic helix metamaterials

    Full text link
    We develop a theory to compute and interpret the photonic band structure of a periodic array of metallic helices for the first time. Interesting features of band structure include the ingenuous longitudinal and circularly polarized eigenmodes, the wide polarization gap [Science 325, 1513 (2009)], and the helical symmetry guarantees the existence of negative group velocity bands at both sides of the polarization gap and band crossings pinned at the zone boundary with fixed frequencies. A direct proof of negative refraction via a chiral route [Science 306, 1353 (2004)] is achieved for the first time by measuring Gooshanchen shift through a slab of three dimensional bona fide helix metamaterial

    Experimental demonstration and analysis of compact silicon-nanowire-based couplers

    Get PDF
    Compact 2 x 2 couplers based on silicon nanowires are fabricated and tested. They include a directional (X) coupler, a cross-gap coupler (CGC), and a multimode interference (MMI) coupler. The length of the X coupler\u27s parallel film waveguide is 1 μm. The theoretical minimum excess loss of the X coupler is 0.73 dB, whereas its experimental value is 1.0817 dB. CGC has a coupling region length of 24 μm. The minimum excess loss of CGC, which is 0.6 dB in theory, is experimentally determined to be 0.6737 dB. Taper waveguides are used as input/output waveguides for the MMI coupler. The footprint of the MMI region is only 6 x 57 μm2. The excess loss of the MMI coupler is theoretically 0.46 dB, but its experimental value is 0.5423 dB. The experimental nonuniformity of the MMI coupler is 0.0063 dB when the center wavelength is 1.55 μm. The maximum excess loss of the MMI coupler is 0.8233 dB in the wavelength range of 1.52 to 1.58 μm. The simulated and experimental results show that a small 2 x 2 MMI coupler that is suitable for optoelectronic integration exhibits lower excess loss, wider bandwidth, and better uniformity

    Practical fabrication and analysis of an optimized compact eight-channel silicon arrayed-waveguide grating

    Get PDF
    We have designed, fabricated, and characterized a 1 x 8 ultrasmall compact arrayed-waveguide grating (AWG) on silicon-on-insulator (SOI) in a fiber grating demodulation integration microsystem. The miniature AWG, consisting of Si photonic wire waveguides, was designed using the complete modeling simulation in the beam propagation method. The device was fabricated on an SOI substrate and evaluated in the wavelength range around 1.55 μm, with an effective area of 230 x 160 μm. Clear demultiplexing characteristics were observed with a channel spacing of 1.91 nm. The influence of the waveguide widths on crosstalk defined by adjacent channel crosstalk and phase error is discussed. Insertion loss, crosstalk, and nonuniformity of loss were measured to be −3.18, −23.1, and −1.35 dB, respectively. Thus, the AWG design is the best choice for a fiber Bragg grating demodulation microsystem

    Population Redistribution among Multiple Electronic States of Molecular Nitrogen Ions in Strong Laser Fields

    Full text link
    We carry out a combined theoretical and experimental investigation on the population distributions in the ground and excited states of tunnel ionized N2 molecules at various driver wavelengths in the near- and mid-infrared range. Our results reveal that efficient couplings (i.e., population exchanges) between the ground state and the excited states occur in strong laser fields. The couplings result in the population inversion between the ground and the excited states at the wavelengths near 800 nm, which is verified by our experiment by observing the amplification of a seed at ~391 nm. The result provides insight into the mechanism of free-space nitrogen ion lasers generated in remote air with strong femtosecond laser pulses.Comment: 18 pages, 4 figure

    Fasudil in Combination With Bone Marrow Stromal Cells (BMSCs) Attenuates Alzheimer\u27s Disease-Related Changes Through the Regulation of the Peripheral Immune System.

    Get PDF
    Alzheimer\u27s disease (AD) is a chronic progressive neurodegenerative disease. Its mechanism is still not clear. Majority of research focused on the central nervous system (CNS) changes, while few studies emphasize on peripheral immune system modulation. Our study aimed to investigate the regulation of the peripheral immune system and its relationship to the severity of the disease after treatment in an AD model of APPswe/PSEN1dE9 transgenic (APP/PS1 Tg) mice. APP/PS1 Tg mice (8 months old) were treated with the ROCK-II inhibitor 1-(5-isoquinolinesulfonyl)-homo-piperazine (Fasudil) (intraperitoneal (i.p.) injections, 25 mg/kg/day), bone marrow stromal cells (BMSCs; caudal vein injections, 1 × 1

    Model Suggests Potential for Porites Coral Population Recovery After Removal of Anthropogenic Disturbance (Luhuitou, Hainan, South China Sea)

    Get PDF
    Population models are important for resource management and can inform about potential trajectories useful for planning purposes, even with incomplete monitoring data. From size frequency data on Luhuitou fringing reef, Hainan, South China Sea, a matrix population model of massive corals (Porites lutea) was developed and trajectories over 100 years under no disturbance and random disturbances were projected. The model reflects a largely open population of Porites lutea, with low local recruitment and preponderance of imported recruitment. Under no further disturbance, the population of Porites lutea will grow and its size structure will change from predominance of small size classes to large size classes. Therewith, total Porites cover will increase. Even under random disturbances every 10 to 20 years, the Porites population could remain viable, albeit at lower space cover. The models suggest recovery at Luhuitou following the removal of chronic anthropogenic disturbance. Extending the area of coral reef reserves to protect the open coral community and the path of connectivity is advisable and imperative for the conservation of Hainan’s coral reefs

    Highly efficient polarization-independent grating coupler used in silica-based hybrid photodetector integration

    Get PDF
    A highly efficient polarization-independent output grating coupler was optimized and designed based on silicon-on-insulator used for silica-based hybrid photodetector integration in an arrayed waveguide grating demodulation-integrated microsystem. The finite-difference time-domain (FDTD) method optimizes coupling efficiency by enabling the design of the grating period, duty cycle, etch depth, grating length, and polarization-dependent loss (PDL). The output coupling efficiencies of both the transverse electric (TE) and transverse magnetic (TM) modes are higher than 60% at 1517 to 1605 nm and similar to 67% at around 1550 nm. The designed grating exhibits the desired property at the 3-dB bandwidth of 200 nm from 1450 to 1650 nm and a PDL \u3c0.5 dB of 110 nm from 1513 to 1623 nm. The power absorption efficiency at 1550 nm for TE and TM modes reaches 78% and 70%, respectively. Both the power absorption efficiency of TE mode and that of TM mode are over 70% in a broad band of 1491 to 1550 nm

    Metallic helix array as a broadband wave plate

    Full text link
    This study proposes that a metallic helix array can operate as a highly-transparent broadband wave plate in propagation directions perpendicular to the axis of helices. The functionality arises from a special property of the helix array, namely that the eigenstates of elliptically right-handed and left-handed polarization are dominated by Bragg scattering and local resonance respectively, and can be modulated separately with nearly fixed difference between their wavevectors in a wide frequency range. The wave plate functionality is theoretically and experimentally demonstrated by the transformation of polarized states in a wide frequency range
    • …
    corecore