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Abstract. Compact 2 × 2 couplers based on silicon nanowires are fabri-
cated and tested. They include a directional (X) coupler, a cross-gap cou-
pler (CGC), and a multimode interference (MMI) coupler. The length of the
X coupler’s parallel film waveguide is 1 μm. The theoretical minimum
excess loss of the X coupler is 0.73 dB, whereas its experimental
value is 1.0817 dB. CGC has a coupling region length of 24 μm. The mini-
mum excess loss of CGC, which is 0.6 dB in theory, is experimentally
determined to be 0.6737 dB. Taper waveguides are used as input/output
waveguides for the MMI coupler. The footprint of the MMI region is only
6 × 57 μm2. The excess loss of the MMI coupler is theoretically 0.46 dB,
but its experimental value is 0.5423 dB. The experimental nonuniformity of
the MMI coupler is 0.0063 dB when the center wavelength is 1.55 μm. The
maximum excess loss of the MMI coupler is 0.8233 dB in the wavelength
range of 1.52 to 1.58 μm. The simulated and experimental results show
that a small 2 × 2MMI coupler that is suitable for optoelectronic integration
exhibits lower excess loss, wider bandwidth, and better uniformity. © 2013
Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.OE.52.6.064003]

Subject terms: optical devices; silicon-nanowire; coupler; loss; optoelectronic
integration.
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1 Introduction
In the optical fiber grating demodulation system, optical cou-
plers have irreplaceable and important functions. The devel-
opment of low-cost, high-performance optical couplers with
high-level integration is necessary and urgent to meet the
requirements of demodulation systems.1 In 2008, Chen2

introduced the application of a femtosecond fiber laser to
fabricate broadband directional (X) couplers inside bulk
glass for general power-splitting applications within the tele-
com spectrum with wavelengths of 1250 to 1650 nm; the
coupling region length of the said coupler was 0.1 mm.
Simultaneously, Yang3 designed and fabricated a 2 × 2
tapered multimode interference (MMI) coupler using an air-
cladded SU-8 rectangular waveguide with a total MMI size
of approximately 5.3 × 34.2 μm2, an excess loss of 1.3 dB,
and a nonuniformity of ∼0.8 dB. In 2010, Tanaka4 proposed
and designed a CGC based on silicon-on-insulator (SOI)
technology. Meanwhile, Halir5 designed a colorless X cou-
pler with a dispersion-engineered subwavelength structure in
2012; this coupler covered a 100 nm bandwidth with an
imbalance of less than 0.6 dB.

The aforementioned 2 × 2 couplers were applied in differ-
ent optical devices. These couplers have the advantage of
either a wider bandwidth or a smaller footprint. Here, we
have designed a silicon-nanowire-based X coupler, CGC,
and 2 × 2 MMI coupler for the array waveguide grating
(AWG) demodulation integration microsystem.6,7 These cou-
plers are used in the C band. Their splitting ratio should be
50∶50 to obtain the maximum power for AWG. The couplers
are simulated using the beam propagation method (BPM),

with SOI as the fabrication material. The designed couplers
are fabricated and tested in this study. The simulated and
experimental results are compared, and their differences
are analyzed. The results show that the designed couplers
exhibit low loss. Specifically, the MMI coupler has the com-
bined advantages of low loss and low nonuniformity as well
as a small footprint and a wide bandwidth.

2 Fabrication and Testing of 2 × 2 Couplers

2.1 Fabrication Process and Testing System

SOI is selected as the material for the simulation and fabri-
cation of the couplers. SOI is a prominent platform for
microelectronics and optoelectronics, which can be used
in optical device interconnections and applied in military
devices.8,9 This material is superior in terms of its compat-
ibility with silicon processing, convenient electronic or pho-
tonic integration, waveguide characteristics, facile operation
in optical circuits, and radioprotection. Bent waveguides
with smaller radii of curvature can be realized on SOI sub-
strates. Extremely small devices can be fabricated on SOI
substrates because of the ultrahigh contrast between the
refractive indices of Si and SiO2.

The original equipment manufacturer of our designed
coupler is Institute of Microelectronics (IME) from
Singapore. The bare SOI wafer used during fabrication had
the following parameters: (1) buried SiO2 with a thickness of
2 μm and a refractive index of 1.45; and (2) top Si layer, with
a thickness of 220 nm and a refractive index of 3.46. The
standard fabrication process used by IME for optical cou-
plers is schematically shown in Fig. 1. Here, 248-nm lithog-
raphy is used.0091-3286/2013/$25.00 © 2013 SPIE
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A tunable laser is used on the C-band during testing. The
SMF-28 with a tapered tip at one end is selected to couple the
light source and the chips. The coupling efficiency of the
tapered fiber and the waveguides is approximately 50%.
During the testing process, an infrared microscope with a
camera is used to observe the output of the couplers.

2.2 X Coupler Testing

The X coupler is based on the power exchange principle
between two waveguides approaching each other. The cou-
pling region of the X coupler periodically exchanges energy
by coupling between the two parallel film waveguides. The
splitting ratio can be controlled by adjusting the parameters
of the coupling region. The coupling length can be expressed
as:

L ¼ π

ðne − noÞk0
; (1)

where ne and no are the effective refraction indexes of the
even and odd symmetrical modes, respectively. k0 is the vac-
uum vector. The coupling length for a 3 dB X coupler is
expressed as:

L3 dB ¼ L
2
¼ π

2ðne − noÞk0
. (2)

The X coupler is simulated via BeamPROP simulation
engine, which is a part of the RSoft Photonics Suite, and is
based on advanced finite-difference beam propagation tech-
niques. The waveguide width is expressed as w. The distance
between two parallel film waveguides is expressed as s. X
couplers with different w and s are simulated, and the best
simulation result is presented in Fig. 2.

The micrographs of the fabricated X coupler are shown in
Fig. 3. A representative charge-coupled device (CCD) image
of the output field is shown in Fig. 4. When the center wave-
length is 1.55 μm, the excess loss of the device is approx-
imately 0.73 dB based on the simulation results. However,
its experiment value is 1.0817 dB. The simulated and exper-
imental results are compared in Table 1. CR represents the
splitting ratio:

CR ¼ POUTi

ΣPOUTi
× 100%; (3)

where POUTi is the output power from the coupler’s output
port i.
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Fig. 1 Fabrication process flow used by IME for optical couplers. (a) Bare Si-substrate wafer; (b) bottom antireflective coating (BARC), photoresist
(PR) coating and soft bake; (c) exposure, postexposure bake, and development; (d) BARC and Si etching; (e) PR stripping and clean-up; and (f) Si
surface treatment.

0.0

1.0

X (µm)

4- 2- 0 2 4

Z
 (

µm
)

0

100

200

300

Monitor Value (a.u.)

0.00.51.0

   
Pathway,

Monitor:

1, Launch

2, Launch

Fig. 2 Optical field and output power of the X coupler when w ¼ 0.55
and s ¼ 0.2 μm. “1, Launch” represents the light power of the X cou-
pler’s input waveguide, “2, Launch” represents the light power of the X
coupler’s coupling waveguide.

(a)

(b)

Footprint:300µm×10µm

1µm
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Fig. 3 Micrographs of the X coupler.

Fig. 4 Charge-coupled device (CCD) image for the output field of the
X coupler when w ¼ 0.55 and s ¼ 0.2 μm.
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UL represents the nonuniformity:

UL ¼ 10 lg
POUTi

ΣPOUTi
. (4)

IL1 and IL2 represent the insert loss of the bar and cross
paths, respectively:

ILi ¼ −10 lg
POUTi

PIN

ðdBÞ; (5)

where PIN is the input power from the one of the coupler’s
output ports.

EL represents the excess loss:

EL ¼ −10 lg
ΣPOUTi

PIN

ðdBÞ: (6)

The difference between the simulated and experimental
nonuniformity of the X coupler is relatively large (Table 1).
This difference is caused by the fabrication tolerance because
the X coupler is highly sensitive to the coupling length.

2.3 CGC Testing

A CGC is a coupler that has an X-junction with an internal
cross-sectional mirror. The gap in the CGC between the two
waveguides functions as a half mirror. The principles of
CGCs are similar to those of X couplers. However, these two
types of couplers differ in their input/output waveguides,
such that only those of CGCs are linear.

Similar to the X coupler, the waveguide width for the
CGC system is expressed as w, whereas its gap is expressed
as s. CGCs with different values for w and s are simulated,
and the best simulation result is shown in Fig. 5.

The micrographs and detailed parameters of the CGC are
shown in Fig. 6. The CCD image of the output field is shown
in Fig. 7. When the center wavelength is 1.55 μm, the excess
loss of the device is ∼0.6 dB according to the simulations,
whereas its experimental value is 0.6737 dB. The simulated
and experimental results are compared in Table 2. This table
shows that the differences between the simulated and exper-
imental results are relatively small.

Bent waveguides with straight lines can induce a trans-
verse coupling effect. Thus, after the connection of bent
waveguides, the original coupling region becomes longer.
The splitting ratio can be kept constant if the bent wave-
guides are followed by a reduced coupling region length.
Moreover, bent waveguides are harder to fabricate. Thus,
a CGC has better performance and a relatively higher fabri-
cation tolerance than an X coupler with the same footprint.

2.4 Testing the 2 × 2 MMI Couplers

The MMI coupler is based on the self-imaging principle10,11

and has three interference mechanisms: general, paired, and
symmetrical.

Paired interference is selected for this paper. Input wave-
guides are set in the position �we∕6 of the multimode wave-
guide:

we ¼ wþ λ0
π
·

�
nc
nr

�
2σ

ðn2r − n2cÞ−1
2; (7)

where w is the multimode waveguide width and λ0 is the
center wavelength. In this equation, σ ¼ 0 for the transverse

Table 1 Comparison of X coupler properties.

CR UL (dB) IL1 (dB) IL2 (dB) EL (dB)

Simulation results 0.9539 0.2050 3.8439 3.6389 0.73

Experimental results 2.0347 3.0850 2.8179 5.9029 1.0817

0.0
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Monitor:

1, Launch

2, Launch

Fig. 5 Optical field and output power of cross-gap coupler (CGC)
when 0.55 and s ¼ 0.2 μm. “1, Launch” represents the light power
of the CGC’s input waveguide, “2, Launch” represents the light
power of the CGC’s coupling waveguide.

(a)

(b)
24µm

Footprint:300µm×10µm w=0.55µm, s=0.2µm

Fig. 6 Micrographs of CGC.

Fig. 7 CCD image for the CGC output field when w ¼ 0.55 and
s ¼ 0.2 μm.

Table 2 Comparison of cross-gap coupler (CGC) properties.

CR UL (dB) IL1 (dB) IL2 (dB) EL (dB)

Simulation results 0.9917 0.0363 3.6289 3.5924 0.6

Experimental results 0.9693 0.1355 3.7523 3.6168 0.6737
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electric (TE) mode, whereas σ ¼ 1 for the transverse mag-
netic (TM) mode. nc and nr are the effective refractive
indexes of the cladding and the core, respectively.

The multimode waveguide length can be expressed as:

LMMI ¼
Lπ

2
¼ π

2ðβ0 − β1Þ
≈
2nw2

e

3λ0
; (8)

where Lπ represents the coupling length of the two lowest
order modes. β0 and β1 are the propagation constants of
the lateral modes 0 and 1, respectively.

The multimode waveguide width is expressed as w. A
comparison of MMI coupler properties with different w
according to the simulation results is presented in Table 3.

MMI couplers with w of 15 and 6 μm are fabricated and
tested in this study. The optical field and output power of the
MMI coupler when w ¼ 15 μm are shown in Fig. 8.

The micrographs of the MMI coupler when w ¼ 15 μm
are shown in Fig. 9. The CCD image of the output field is
shown in Fig. 10. When the center wavelength is 1.55 μm,
the excess loss of the device is approximately 0.09 dB based
on the simulation. However, its experimental excess loss is
0.1418 dB. A comparison of the simulated and experimental
results is presented in Table 4. From this table, the difference

between the simulated and experimental values is
extremely small.

The output power of the MMI coupler when the center
wavelength ranged from 1.52 to 1.58 μm is shown in Fig. 11,
where the maximum excess loss is 0.2871 dB. P represents
the output power of the light source, whereas P0 represents
the output power of a straight waveguide. P1 and P2 re-
present the output power values of the coupler’s bar and
cross paths, respectively. The experimental results show
that the designed coupler has a wide range of wavelength
responses.

The optical field and output power of the MMI coupler
when w ¼ 6 μm are illustrated in Fig. 12. Input/output wave-
guides are designed as tapered waveguides during the opti-
mization process to make the image point clearer, to improve
the splitting ratio, and to reduce loss.

Table 3 Comparison of MMI coupler properties with different w .

w (μm) CR UL (dB) IL1 (dB) IL2 (dB) EL (dB)

48 1.03 0.1284 2.9964 3.1256 0.05

24 0.98 0.0877 3.1149 3.0260 0.06

15 0.99 0.044 3.1220 3.0786 0.09

12 0.985 0.0656 3.2431 3.1776 0.2

6 1.013 0.06 3.4448 3.4960 0.46

0.0
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8- 6- 4- 2- 0 2 4 6 8
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1, Launch
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Fig. 8 Optical field and output power of the MMI coupler when
w ¼ 15 μm. “1, Launch” represents the light power of the MMI cou-
pler’s input waveguide, “2, Launch” represents the light power of the
MMI coupler’s left output waveguide, “3, Launch” represents the light
power of the MMI coupler’s right output waveguide.

(a)

(b) (c)

Footprint of MMI region :339µm×15µm

Fig. 9 Micrographs of the MMI coupler when w ¼ 15 μm.

Fig. 10 CCD image for output field of the MMI coupler when
w ¼ 15 μm.

Table 4 Comparison of MMI coupler properties when w ¼ 15 μm.

CR UL (dB) IL1 (dB) IL2 (dB) EL (dB)

Simulation results 0.99 0.044 3.1220 3.0786 0.09

Experimental results 1.0122 0.0053 3.1495 3.1547 0.1418
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Fig. 11 Output power for MMI coupler when w ¼ 15 μm.
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The micrographs of the MMI coupler when w ¼ 6 μm are
shown in Fig. 13, whereas the CCD image of its output field
is presented in Fig. 14. When the center wavelength is
1.55 μm, the excess loss of this device is approximately
0.46 dB based on the simulated results, but is 0.5423 dB
according to the actual experiment. The excess loss is larger
when w ¼ 6 μm than when w ¼ 15 μm although the foot-
print is much smaller. The simulated and experimental
results of this MMI coupler are compared in Table 5. From
this table, the differences between the results of the simula-
tion and the experiment are small.

The output power of the MMI coupler when the center
wavelength ranged from 1.52 to 1.58 μm is demonstrated
in Fig. 15, where the maximum excess loss is 0.8233 dB.
The experimental results show that the designed coupler has
a wide range of wavelength responses.

3 Analysis of the Designed Couplers
The simulated and experimental results indicate that X cou-
pler has a lower fabrication tolerance and a relatively larger
size. Its splitting ratio is highly sensitive to the parameters of
the coupling region. Given the same footprint, a CGC has
relatively smaller loss and nonuniformity. Thus, CGCs can
be used as alternatives to X couplers. However, a CGC
depends greatly on the wavelength and is sensitive to polari-
zation. MMI couplers have several advantages such as their
compact construction, low loss, simple fabrication tech-
nique, high fabrication tolerance, high uniformity, and small
size. Thus, MMI couplers are widely used in planar light-
wave circuits. As mentioned in Sec. 1, Chen’s coupler2 has
advantage of a wide bandwidth, but its footprint is large. The
respective couplers designed by Yang3 and Tanaka4 have
small footprints but have relatively large excess loss and non-
uniformity. Our MMI coupler (w ¼ 6 μm) features the com-
bined advantages of low excess loss and high uniformity,
with a small footprint and wide bandwidth.

4 Conclusion
This paper introduces the fabrication and experimental
results of a 2 × 2 coupler designed with silicon photonic
nanowires for the AWG demodulation integration microsys-
tem. Three kinds of 2 × 2 couplers are fabricated and tested.
Compared with the CGC and the X coupler, the MMI cou-
pler has the advantages of a smaller footprint, lower loss,
wider bandwidth, and high fabrication tolerance. When
the center wavelength is 1.55 μm, the designedMMI coupler,
with a total footprint of 6 × 100 μm2, has an excess loss of
0.5423 dB and a uniformity of 0.0063 dB according to the
experimental results. The maximum excess loss of this
coupler is 0.8233 dB within the range of 1520 to 1580 nm.
Thus, the MMI coupler can meet optoelectronic integration
requirements.

0.0

1.0

X (µm)

3- 2- 1- 0 1 2 3

Z
 (

µm
)

0

10

20

30

40

50

60

70

80

90

100

Monitor Value (a.u.)

0.00.51.0

   
Pathway,

Monitor:

1, Launch

2, Launch

3, Launch

Fig. 12 Optical field and output power of the MMI coupler with a
tapered input/output waveguide when w ¼ 6 μm. “1, Launch” repre-
sents the light power of the MMI coupler’s input waveguide, “2,
Launch” represents the light power of the MMI coupler’s left output
waveguide, “3, Launch” represents the light power of the MMI cou-
pler’s right output waveguide.
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Fig. 13 Micrographs of the MMI coupler when w ¼ 6 μm.

Fig. 14 CCD image for output field of the MMI coupler when
w ¼ 6 μm.

Table 5 Comparison of MMI coupler properties when w ¼ 6 μm.

CR UL (dB) IL1 (dB) IL2 (dB) EL (dB)

Simulation results 1.013 0.06 3.4448 3.4960 0.46

Experimental results 1.0122 0.0053 3.5495 3.5558 0.5423
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Fig. 15 Output power for the MMI coupler when w ¼ 6 μm.
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