52 research outputs found

    Stroke Extraction of Chinese Character Based on Deep Structure Deformable Image Registration

    Full text link
    Stroke extraction of Chinese characters plays an important role in the field of character recognition and generation. The most existing character stroke extraction methods focus on image morphological features. These methods usually lead to errors of cross strokes extraction and stroke matching due to rarely using stroke semantics and prior information. In this paper, we propose a deep learning-based character stroke extraction method that takes semantic features and prior information of strokes into consideration. This method consists of three parts: image registration-based stroke registration that establishes the rough registration of the reference strokes and the target as prior information; image semantic segmentation-based stroke segmentation that preliminarily separates target strokes into seven categories; and high-precision extraction of single strokes. In the stroke registration, we propose a structure deformable image registration network to achieve structure-deformable transformation while maintaining the stable morphology of single strokes for character images with complex structures. In order to verify the effectiveness of the method, we construct two datasets respectively for calligraphy characters and regular handwriting characters. The experimental results show that our method strongly outperforms the baselines. Code is available at https://github.com/MengLi-l1/StrokeExtraction.Comment: 10 pages, 8 figures, published to AAAI-23 (oral

    Evaluation of different b-values in DWI and 1H MRS for pancreatic cancer and pancreatitis: a rabbit model

    Get PDF
    Pancreatic cancer is a common malignant tumor with high incidence of metastasis. Currently, there is no absolute standard for the choice of b-value for diffusion-weighted imaging (DWI) for pancreatic cancer. The b-value is rarely reported in animal model study, especially in pancreatic cancer/mass pancreatitis rabbit models. The authors\u27 aim was to determine the different b-values to differentiate the diagnosis of pancreatic cancer and mass pancreatitis in rabbit models using DWI. When comparing the effect of different b-values in diagnostic process, the pathological results could be regarded as the gold standard. In this research, 30 healthy New Zealand rabbits were selected and divided into three groups by random number table method: group 1 (pancreatic cancer), group 2 (mass pancreatitis) and the control group (healthy). After DWI (three different b-values 333, 667, 1000 s/mm2, respectively) and MRI examination, the model rabbits were then killed. Afterward, the tumor mass was removed for biopsy, and occupation anatomy and tumor histopathology were examined. Fat-suppressing sequences of T2WI, DWI, ADC, difference of ADC (DADC), and MRS were used. The present study determined that the effective differential diagnosis of pancreatic cancer and pancreatitis was determined at low b-values (333 s/mm2) when performed DWI inspection in rabbit models

    User independent Emotion Recognition with Residual Signal-Image Network

    Full text link
    User independent emotion recognition with large scale physiological signals is a tough problem. There exist many advanced methods but they are conducted under relatively small datasets with dozens of subjects. Here, we propose Res-SIN, a novel end-to-end framework using Electrodermal Activity(EDA) signal images to classify human emotion. We first apply convex optimization-based EDA (cvxEDA) to decompose signals and mine the static and dynamic emotion changes. Then, we transform decomposed signals to images so that they can be effectively processed by CNN frameworks. The Res-SIN combines individual emotion features and external emotion benchmarks to accelerate convergence. We evaluate our approach on the PMEmo dataset, the currently largest emotional dataset containing music and EDA signals. To the best of author's knowledge, our method is the first attempt to classify large scale subject-independent emotion with 7962 pieces of EDA signals from 457 subjects. Experimental results demonstrate the reliability of our model and the binary classification accuracy of 73.65% and 73.43% on arousal and valence dimension can be used as a baseline

    Extracting Cardiac Information From Medical Radar Using Locally Projective Adaptive Signal Separation

    Get PDF
    Electrocardiography is the gold standard for electrical heartbeat activity, but offers no direct measurement of mechanical activity. Mechanical cardiac activity can be assessed non-invasively using, e.g., ballistocardiography and recently, medical radar has emerged as a contactless alternative modality. However, all modalities for measuring the mechanical cardiac activity are affected by respiratory movements, requiring a signal separation step before higher-level analysis can be performed. This paper adapts a non-linear filter for separating the respiratory and cardiac signal components of radar recordings. In addition, we present an adaptive algorithm for estimating the parameters for the non-linear filter. The novelty of our method lies in the combination of the non-linear signal separation method with a novel, adaptive parameter estimation method specifically designed for the non-linear signal separation method, eliminating the need for manual intervention and resulting in a fully adaptive algorithm. Using the two benchmark applications of (i) cardiac template extraction from radar and (ii) peak timing analysis, we demonstrate that the non-linear filter combined with adaptive parameter estimation delivers superior results compared to linear filtering. The results show that using locally projective adaptive signal separation (LoPASS), we are able to reduce the mean standard deviation of the cardiac template by at least a factor of 2 across all subjects. In addition, using LoPASS, 9 out of 10 subjects show significant (at a confidence level of 2.5%) correlation between the R-T-interval and the R-radar-interval, while using linear filters this ratio drops to 6 out of 10. Our analysis suggests that the improvement is due to better preservation of the cardiac signal morphology by the non-linear signal separation method. Hence, we expect that the non-linear signal separation method introduced in this paper will mostly benefit analysis methods investigating the cardiac radar signal morphology on a beat-to-beat basis

    Evaluation of a Home Biomonitoring Autonomous Mobile Robot

    Get PDF
    Increasing population age demands more services in healthcare domain. It has been shown that mobile robots could be a potential solution to home biomonitoring for the elderly. Through our previous studies, a mobile robot system that is able to track a subject and identify his daily living activities has been developed. However, the system has not been tested in any home living scenarios. In this study we did a series of experiments to investigate the accuracy of activity recognition of the mobile robot in a home living scenario. The daily activities tested in the evaluation experiment include watching TV and sleeping. A dataset recorded by a distributed distance-measuring sensor network was used as a reference to the activity recognition results. It was shown that the accuracy is not consistent for all the activities; that is,mobile robot could achieve a high success rate in some activities but a poor success rate in others. It was found that the observation position of the mobile robot and subject surroundings have high impact on the accuracy of the activity recognition, due to the variability of the home living daily activities and their transitional process. The possibility of improvement of recognition accuracy has been shown too

    A bidirectional Mendelian randomization study supports causal effects of kidney function on blood pressure

    Get PDF
    Blood pressure and kidney function have a bidirectional relation. Hypertension has long been considered as a risk factor for kidney function decline. However, whether intensive blood pressure control could promote kidney health has been uncertain. The kidney is known to have a major role in affecting blood pressure through sodium extraction and regulating electrolyte balance. This bidirectional relation makes causal inference between these two traits difficult. Therefore, to examine the causal relations between these two traits, we performed two-sample Mendelian randomization analyses using summary statistics of large-scale genome-wide association studies. We selected genetic instruments more likely to be specific for kidney function using meta-analyses of complementary kidney function biomarkers (glomerular filtration rate estimated from serum creatinine [eGFRcr], and blood urea nitrogen from the CKDGen Consortium). Systolic and diastolic blood pressure summary statistics were from the International Consortium for Blood Pressure and UK Biobank. Significant evidence supported the causal effects of higher kidney function on lower blood pressure. Based on the mode-based Mendelian randomization method, the effect estimates for one standard deviation (SD) higher in log-transformed eGFRcr was -0.17 SD unit (95 % confidence interval: -0.09 to -0.24) in systolic blood pressure and -0.15 SD unit (95% confidence interval: -0.07 to -0.22) in diastolic blood pressure. In contrast, the causal effects of blood pressure on kidney function were not statistically significant. Thus, our results support causal effects of higher kidney function on lower blood pressure and suggest preventing kidney function decline can reduce the public health burden of hypertension

    Crystallization Control of N,N′-Dioctyl Perylene Diimide by Amphiphilic Block Copolymers Containing poly(3-Hexylthiophene) and Polyethylene Glycol

    Get PDF
    The preparation of micron- to nanometer-sized functional materials with well-defined shapes and packing is a key process to their applications. There are many ways to control the crystal growth of organic semiconductors. Adding polymer additives has been proven a robust strategy to optimize semiconductor crystal structure and the corresponding optoelectronic properties. We have found that poly(3-hexylthiophene) (P3HT) can effectively regulate the crystallization behavior of N,N′-dioctyl perylene diimide (C8PDI). In this study, we combined P3HT and polyethylene glycol (PEG) to amphiphilic block copolymers and studied the crystallization modification effect of these block copolymers. It is found that the crystallization modification effect of the block copolymers is retained and gradually enhanced with P3HT content. The length of C8PDI crystals were well controlled from 2 to 0.4 μm, and the width from 210 to 35 nm. On the other hand, due to the water solubility of PEG block, crystalline PEG-b-P3HT/C8PDI micelles in water were successfully prepared, and this water phase colloid could be stable for more than 2 weeks, which provides a new way to prepare pollution-free aqueous organic semiconductor inks for printing electronic devices

    Comparison of staged-stent and stent-assisted coiling technique for ruptured saccular wide-necked intracranial aneurysms: Safety and efficacy based on a propensity score-matched cohort study

    Get PDF
    BackgroundApplication of stent-assisted coiling and FD in acute phase of ruptured wide-necked aneurysms is relatively contraindicated due to the potential risk of ischemic and hemorrhagic complications. Scheduled stenting after initial coiling has emerged as an alternative paradigm for ruptured wide-necked aneurysms. The objective of this study is to evaluate the safety and efficacy of a strategy of staged stent-assisted coiling in acutely ruptured saccular wide-necked intracranial aneurysms compared with conventional early stent-assisted coiling strategy via propensity score matching in a high-volume center.MethodsA retrospective review of patients with acutely ruptured saccular wide-necked intracranial aneurysms who underwent staged stent-assisted coiling or conventional stent-assisted coiling from November 2014 to November 2019 was performed. Perioperative procedure-related complications and clinical and angiographic follow-up outcomes were compared.ResultsA total of 69 patients with staged stent-assisted coiling and 138 patients with conventional stent-assisted coiling were enrolled after 1:2 propensity score matching. The median interval time between previous coiling and later stenting was 4.0 weeks (range 3.5–7.5 weeks). No rebleeding occurred during the intervals. The rate of immediate complete occlusion was lower with initial coiling before scheduled stenting than with conventional stent-assisted coiling (21.7 vs. 60.9%), whereas comparable results were observed at follow-up (82.5 vs. 72.9%; p = 0.357). The clinical follow-up outcomes, overall procedure-related complications and procedure-related mortality between the two groups demonstrated no significant differences (P = 0.232, P = 0.089, P = 0.537, respectively). Multivariate analysis showed that modified Fisher grades (OR = 2.120, P = 0.041) were independent predictors for overall procedure-related complications and no significant predictors for hemorrhagic and ischemic complications.ConclusionsStaged stent-assisted coiling is a safe and effective treatment strategy for acutely ruptured saccular wide-necked intracranial aneurysms, with comparable complete occlusion rates, recurrence rates at follow-up and overall procedure-related complication rates compared with conventional stent-assisted coiling strategy. Staged stent-assisted coiling could be an alternative treatment option for selected ruptured intracranial aneurysms in the future

    Investigation of a novel experimental therapeutic involving transcriptional reprogramming of invasive cancer cells with "stem-like" characteristics

    No full text
    Metastatic breast cancer is currently an incurable disease with no “gold standard” therapy. There is mounting evidence supporting that a primary tumors contain subpopulations of stem-like cancer cells, expressing stem cell markers and gene signatures. These cell variants have been hypothesized to drive metastatic progression due to their higher plasticity and invasive capacity. The aim of this work is to explore the therapeutic potential of small molecules interfering with stem cell signaling to reprogram stem-like cancer cells into non-stemness. The thesis is organized into two chapters: Chapter 1 addresses a review on cancer stem cell hypothesis and small molecule-induced cell reprograming. For the thesis, chapter 1 is also intended serve as general background. Chapter 2 is a research paper exploring the anti-metastatic potential of SLLN06, a novel small molecule multi-kinase inhibitor of Aurora A, Aurora B, Jak2, and Ret kinases. This molecule was identified through phenotypic screening of a chemical library synthesized in my host laboratory based on the compound capacity to reverse the expression status of stem cell markers implicated in breast cancer stem cells, namely CD44high/CD24low/ALDHhigh. SLLN06 at nM range was able to reprogram stem-like cancer cells to lose their stem-cell characteristics, including a shift from CD44high/CD24low/ALDHhigh to CD44high/CD24high/ALDHlow phenotype, as well as inhibition of the cells’ capacity to form mammospheres. SLLN06 also prevented metastasis formation induced in vivo by stem-like cancer cells. These results lay the foundation for further investigation of reprogramming mechanisms for this class of molecules.Le cancer du sein avancé ou métastatique demeure une maladie incurable avec les modalités de traitements actuels. La littérature montre qu'une sous-population de cellules cancéreuses, ressemblant aux cellules souches, sont enrichies dans les types de cancers agressifs. Ces variantes de cellules peuvent jouer le rôle de cellules précurseurs pour la formation de métastases. Le but de cette étude est d'explorer le potentiel thérapeutique de molécules chimiques pour reprogrammer ce type de cellules vers des formes non-invasives. Cette thèse organisée en deux chapitres: Le premier est une revue des connaissances scientifiques actuelles dans le domaine de cellules souches et leurs programmation dans le context des maladies cancéreuses. Le deuxième chapitre résume mon travail de recherche consacré aux études des mecanismes d’action et de l’activité anti-métastatique de SLLN06, une nouvelle molécule qui inhibe les kinases Aurora A/B, Jak2 et Ret et induit une reprogrammation des cellules cancéreuses deriveés de cancer de sein et ayant des charactéristiques de cellules souches. En particulier, SLLN06 est capable d’induire une transition de ces cellules du phenotype CD44+/CD24-/ALDH1+ vers un phenotype CD44+/CD24+/ALDH1-. Enfin, nous avons demontré que ce SLLN06 réduit l'incidence de métastases chez les animaux de laboratoires. Ces résultats ouvrent la voie à des études plus approfondie pour mieux comprendre les implications des mécanismes de reprogrammation des cellules cancéreuses
    • …
    corecore