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Increasing population age demands more services in healthcare domain. It has been shown that mobile robots could be a potential
solution to home biomonitoring for the elderly. Through our previous studies, a mobile robot system that is able to track a subject
and identify his daily living activities has been developed. However, the system has not been tested in any home living scenarios.
In this study we did a series of experiments to investigate the accuracy of activity recognition of the mobile robot in a home
living scenario. The daily activities tested in the evaluation experiment include watching TV and sleeping. A dataset recorded
by a distributed distance-measuring sensor network was used as a reference to the activity recognition results. It was shown that
the accuracy is not consistent for all the activities; that is, mobile robot could achieve a high success rate in some activities but a poor
success rate in others. It was found that the observation position of the mobile robot and subject surroundings have high impact
on the accuracy of the activity recognition, due to the variability of the home living daily activities and their transitional process.
The possibility of improvement of recognition accuracy has been shown too.

1. Introduction

As a result of a drop in the fertility rates and longer life
expectancies, increasing population age turns to be a signif-
icantly serious problem in the world [1, 2].

Older population demands more services in healthcare
domain. Home biomonitoring is one of such services, espe-
cially as population of the single-living elderly (SLE) is
increasing. In the past, these services were provided by
family members. Nowadays, because of low birth rates and
migrations from rural to urban areas, technology solutions
to enable the independent life for SLE are strongly required,
whichwill lead to a reduction in hardwork of caregivers, time
and costs of travels to clinics or hospitals, and so forth.

There have been many efforts to monitor the activities of
daily living. Indirect monitoring focuses on used amount of,
or status of use of, basic necessities for everyday life, such as

lifeline utilities (e.g., electricity, gas, and water supply), and
home electrical appliances (e.g., electric pots) [3]. In direct
monitoring, the behavior or activities performed by subjects
are measured by a set of sensors and analyzed [4–6].

Generally speaking, indirect monitoring is easy to per-
form. The indicators for all the lifeline utilities and electrical
appliances are ready to be used; however, it only provides
indirect information of subjects. On the other hand, direct
monitoring can provide direct information, which benefits
safety of homemonitoring; however, additional hardware and
software are needed.

There have been three different approaches to acquire the
data from the subject and/or environment:

(i) fixed sensor network: to monitor subjects and house
environment change using fixed sensors distributed
in the house environment;
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(ii) wearable sensors: to acquire biodata from the subject
using wearable miniature sensors;

(iii) mobile sensors: to monitor subjects with mobile
robots equipped with a small number of sensors.

Advantages and disadvantages of these approaches shall be
situation-dependent; however, they could be compared in
terms of spatial and temporal continuity of monitoring, in
a general sense. Fixed sensor network approach generally
needs a large set of sensors, if it aims at covering all the
rooms without any dead angles [7]. In the case of furniture
layout changes, additional adjustment may be necessary to
avoid dead angles. The wearable sensors approach could be
a solution to the cost and maintenance problem; however,
the constraints to users or their discomfort are the major
issues, which could cause discontinuous monitoring.The use
of a small number of sensors settled on an autonomous robot
that tracks a subject could reduce the cost and deployment
complexity. Another advantage of using a robot over the other
approaches is the possibility of moving the sensors to place
them at an optimal position and angle for the observation.

Traditionally, robots were used to perform repetitive or
hazardous tasks. But recently, as great progress has beenmade
in robotics research and development, robotic application is
expanding rapidly from the factory into home environment.
The idea to use robots in the AAL (Ambient Assisted Life)
domain is not new, too. There have been many studies using
robots to bring a better quality of life to the elderly [4, 5, 8].

Depending on the level of assistance toADL, robots could
be grouped into the following classes:

(i) For Self-Maintenance Activities of Daily Living or
ADLs [9]: robots that reduce the need for the elderly
to move by bringing desired objects to them.

(ii) For Instrumental Activities of Daily Living or IADLs:
robots that provide support for ADL, such as
meal preparation, laundry, shopping, telephone use;
exoskeletal robotic suits andwheelchairs are examples
of this class, too.

(iii) For Enhanced Activities of Daily Living or EADLs
[10]: many robots are used for hobbies, social com-
munications, new learning, and so forth.

There have been only few reports about home biomonitoring
robots [11]. In one of our previous studies, we developed a
home biomonitoring robot system with the aim of monitor-
ing motor function impaired persons (MIPs) and the elderly
[12].The robot system developed is able to perform tasks such
as subject tracking and behavior observation and analysis
[13].

The evaluation of the system has been performed, show-
ing robust subject tracking and accurate behavior recog-
nition. However, the experiments were done in optimal
conditions and for a short period of time. There are factors
which may appear in real living scenario that may affect the
results of the activity recognition. In order to put the home
biomonitoring robotic system towards practical use, it has to
be tested in home living scenarios.
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Figure 1: Home biomonitoring robot system.

In this study we performed a series of experiments to
investigate the accuracy of activity recognition of the mobile
robot in a home living scenario. The daily activities tested in
the evaluation experiment include watching TV, reading the
newspaper, sleeping, and washing hands. A dataset recorded
by a distributed distance-measuring sensor network, syn-
chronized with the robot system with a standardized proto-
col, was used as a reference to the activity recognition results.

The rest of the paper is organized as follows. Section 2
describes the system architecture of the biomonitoring robot
system. In Section 3 we describe the scenario and exper-
iments used for the evaluation. Experimental results and
discussions are given in Section 4, and, finally, concluding
remarks are stated in Section 5.

2. System Architecture

In this section, a general outline of the robot system for
subject tracking and activity recognition and a distance-
measuring sensor network used to provide the reference data
for the recognized activities will be given, for the purpose of
improving readability.

2.1. The Autonomous Biomonitoring Robot. The autonomous
robot (Figure 1) uses Pioneer P3-DX (Adept MobileRobots)
as its platform. It includes a Lidar (Light Detection and
Ranging) and a Kinect (Microsoft) sensor on a rotation table
[14].

The Lidar was used for simultaneous localization and
mapping (SLAM), while providing data about the obstacles
in the environment. The Kinect sensor is used to detect and
track the subject. The rotation table enables the robot to
observe the subject while moving forward along with the
subject.

In one of our previous studies, an algorithmwas proposed
and implemented to integrate local 3D observation from the
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Kinect sensor and global 2D map made from Lidar sensor
data to detect and track novelties, as a top-down approach
without the necessity of large amount of training data. This
solution has proven to have more than 99.00% detection and
tracking accuracy in testing datasets [13].

Moreover, the system is able to identify 6 different basic
activities: standing, walking, bending, sitting, lying down,
and falling. The activity recognition was accomplished using
features such as the height-and-width ratio, height change
rate, and speed, extracted from human body contour. A state
machine based classifier was then employed to classify the
features of the activity performed by the subject [15].

Experiments with three subjects were performed. In
those experiments the subjects were required to perform a
sequence of activities. The overall correct rate of our human
activity recognition of those experiments was 98.6–99.4%
[15]. The activity recognition could be further improved by
making full use of localization information to deal with
partial occlusion [14]. However, in those experiments, the
activities were performed in a static and repeated manner;
that is, after one activity was carried out repeatedly, at
one certain place, another activity was tested. The activity
performed in different situations, with activity transition, in
a home living scenario was not tested.

Moreover, the control parameters of the system have been
empirically explored under several environment changes and
subject variation, to establish the optimal control strategy to
perform the subject tracking and activity recognition [14].

2.2. A Sensor Network. In our experiments we used a
distance-measuring sensor network to acquire a reference
dataset for corroborating the subject location tracked by
the biomonitoring robot system. The sensor network was
implemented with a platform which provided a standardized
interface and network capability to traditional analog sensors
[16]. It also provides plug-and-play capabilities and continu-
ous data transmission of more than 10 sensors.

The sensors model used at the experiments is the sharp
gp2d12, a distance-measuring sensor with integrated signal
processing and analog voltage output. The sensors were
placed in a fixed locationwhile the robot is free tomove as the
scenario designed for the experiments. The communication
between the robot and platform was realized by a wireless
connection.

The wireless sensor network uses the IEEE 1451 standard.
This standard upgrades traditional sensors to a smart status,
providing them with a standardized interface and wireless
capabilities (Figure 2). Details of the implementation could
be found in [16].

3. Methodology

A set of experiments were designed to test the robot system
in a daily living scenario. The accuracy of the activity
recognition was validated by the reference dataset recorded
by the distributed distance-measuring sensor network and a
video source. The logged data by the robot was synchronized
and comparedwith the recorded video and the sensor dataset.
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Figure 2: Smart sensor. The sensor is connected to the TelosB
mote that provides the signal conditioning and the services and
transmission technology defined in the 1451 standards sections 0 and
5, respectively.

From this comparison the accuracy of the robot system
could be determined.The scenario and experiment setting are
explained in the following subsections.

3.1. Scenario and Activities to Be Recognized. The layout for
the scenario in the experiments is presented in Figure 3. The
scenario was tested in a layout with two separated rooms.The
main room has one television, one kitchen with a sink and
fridge, one table, and one shelf. The second room has one
bed and one desk. Distance-measuring sensors were located
beside the television, table, desk, and bed (Figure 3).

In this scenario, nine daily living scenes were planned.
The basic activities (such as sitting, bending, and walking)
that have been tested for the robot system were included in
these scenes, which were scheduled as follows (Figure 4).

At the beginning of the experiment the subject arrives
home A. The robot is waiting at the entrance and it starts
tracking the subject. Then, the subject moves towards the
kitchen and he washes his hands B. He walks to the TV,
takes a seat, and watches TV C. After watching TV for a
while, he stands up and picks a drink from the fridge D.
When he finishes his drinking, he goes to the table and reads
a newspaperE. After reading the paper he moves to his desk
and reads a bookF. Some minutes later the subject goes to a
shelfG and begins to walk in an open area, as an exerciseH.
When the exercise is finished he goes to the bed for sleep0.

These scenes include the basic activities that should be
recognized by the robot, including walking, standing, bend-
ing, sitting, and lying down. The corresponding activities
included in each situation are presented in Table 1.

3.2. Experimental Tests. Two sets of tests have been per-
formed: activity recognition for scheduled scenes and stand-
ing recognition for specific situations.

The first test, activity recognition for scheduled scenes,
aims to measure the accuracy of the activity recognition
performed in the daily living scenario. The second test aims
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Table 1: Scene indicates the action performed by the subject while the basic activity is the activity, included in the scene, that the robot will
identify.

ID Scene Basic activity Timeline
1 Returning home Walking 00:00
2 Washing hands Bending 00:00–00:01 (1min)
3 Watching TV Sitting 00:01–00:15 (15min)
4 Having a drink Standing and bending 00:15–00:16 (1min)
5 Reading the newspaper Sitting 00:16–00:30 (15min)
6 Reading a book Sitting 00:30–00:40 (10min)
7 Picking something from the shelf Bending 00:40–00:42 (2min)
8 Stepping Walking 00:42–00:50 (8min)
9 Sleeping Lying down 00:50–01:00 (10min)
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Figure 3: Layout of two rooms for the daily living scenario. Red dots show the position of the distance-measuring sensors.

to investigate how the position of the robot, when tracking
the subject, has an impact on the accuracy of the activity
recognition process.

Both tests have been performed by two male healthy
subjects: (1) subject A: 39 years old, male, 1.76 meters and (2)
subject B: 22 years old, male, 1.80 meters.

3.2.1. Activity Recognition for Scheduled Scenes. Two trials
were performed. In both trials, the schedule presented in the
previous section (Figure 4) was followed. The duration of
each activity is shown in Table 1. Each trial was performed by
a different subject. During the test, the frames captured by the
Kinect on the robot, the activity performed by the subject, the
activity recognized by the robot, and the distance-measuring
sensor data were recorded. The experiment was filmed by a
video camera for further validation.

3.2.2. Standing Recognition for Specific Situations. Currently,
the robot decided its observation position according to a
minimum-move strategy. This means that for observing an

activity the robot position is dependent on its tracking path
and no additional movements will be done. However, due to
the robot-subject relative position, the accuracy of the activity
recognition might be quite different. The aim of this test was
to evaluate the impact that the robot position has on the
accuracy of the activity recognition system.

Trials were done considering, respectively, the activity of
standing, which is muchmore likely affected by this distance.
For these trials the subject stood in front of the robot at
distances of 0.5, 1, 1.5, and 2 meters, each position for 2
minutes.

4. Results and Discussion

4.1. Results. The activity recognition results are summarized
in Table 2. Within 43775 frames recorded by Kinect camera
of the robot, 33773 frameswerematched, whichmeans 77.15%
of frames were correctly recognized by the robot.

The recognition accuracy grouped by activity is presented
in Table 3.The accuracy for standing, walking, and bending is
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Figure 4: Planned situations and sites. The number represents the order and ID of the scene. The basic activity contained in each situation is
presented in Table 1.

Table 2: Summary of the activity recognition results.

Summary Totals
Frame 43775
Matched frame 33773
Accuracy 77.15

under 50% while accuracy for sitting and lying down is over
80%.

This information was further broken down in detail
into three different tables (Tables 4, 5, and 6). These tables
present information about the transition from one scene to
another (e.g., A → B) and the scene itself (i.e., reading the
newspaperC).

During the transition between scenes, the accuracy was
drastically decreased (around 51.00%). Scenes B, C, and D
(washing hands, watching TV, and having a drink) also had
below-average accuracy (56.99%, 69.21%, and 26.14%, resp.).
However, for other scenesE,F, and0 (reading a newspaper,
reading a book, and sleeping), high accuracy (93.44%, 81.31%,
and 92.42%) was acquired.

The results of scenesC,E, andF (watching TV, reading
the newspaper, and reading a book) are worth special notice.
Despite containing the same basic activity, that is, sitting,
the accuracy of the three scenes varies considerably (56.99%,
69.21%, and 93.44%, resp.).

The distance-measuring sensor data is presented in Fig-
ure 5. This data was synchronized with the video recording.
The activities have been identified and it could be verified that
the high values in the graph corresponded to the scenes in
which the sensor was involved (C,E,F, and0). When the
subject was in bed, the distance between the sensor and the
subject was higher, so it is seen that the values are lower than
those of the other activities.

Standing and walking activities presented low accuracy.
Table 7 shows the results of standing trial of test 2. The best
result was acquired when the distance was around 1.5 meters.
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Figure 5: Distance-measuring sensor data for 1-hour experiment.
The scene ID included in the graph corresponds with the ones in
Table 1.

For more than 2meters or less than 1 meter, the activity could
be wrongly recognized as sitting.

4.2. Discussion. The evaluation of the system in a home
living scenario has been made, using the activity recognition
rate and distance-measuring sensor recordings. An average
accuracy of 77.15% has been achieved for more than 40.000
frames obtained during the experiments.

The results show that this robot system is able to grasp
a rough daily life pattern. Figure 6 presents the ratio activity
during the trials, the real one and the one recognized by the
robot.

However, the standard deviation for the whole dataset, in
terms of different activity, is 29.02%, which means that the
accuracy differs considerably between activities.

As shown in Tables 4, 5, and 6, standing and walking
activities presented a low recognition rate. The distance
between the robot and the subject was an important factor.
This factor could be taken into consideration with activity
recognition algorithm.

With the actual control policy, the robot moves towards
the subject when the distance between both of them is higher
than 1.2 meters. During the experiments, when the robot is
following a subject and in case the subject stops, the robot
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Table 3: Recognition accuracy grouped by activity.

Standing Walking Bending Sitting Lying down
Frame 1610 4362 995 28052 8000
Matched frame 740 1655 448 22792 7394
Accuracy (%) 45.96 37.94 45.02 81.24 92.42
Standard deviation 31.77 16.2 20.1 9.89 0

Table 4: Activity recognition of scene transition phases (1).

Activity A→ B B B→ C C C→ D D
Standing Walking Bending Standing Walking Sitting Standing Walking Standing Bending

Frame 37 157 393 10 120 9872 38 173 80 477
Matched frame 7 86 224 0 65 6833 31 50 11 205
Accuracy (%) 18.91 54.77 56.99 0 54.16 69.21 81.57 28.90 13.75 42.97

Table 5: Activity recognition of scene transition phases (2).

Activity D→ E E E→ F F F→ G→ H
Standing Walking Sitting Standing Walking Sitting Standing Walking Bending Bending

Frame 15 138 9691 400 266 8489 544 281 58 26
Matched frame 6 34 9056 306 162 6903 227 185 9 8
Accuracy (%) 40.00 24.63 93.44 76.50 60.90 81.31 41.72 65.83 15.51 30.76

Table 6: Activity recognition of scene transition phases (3).

Activity H H→ F→ 0 0
Standing Walking Standing Walking Bending Bending Lying down

Frame 756 2631 486 596 16 25 8000
Matched frame 744 707 152 366 2 0 7394
Accuracy (%) 98.41 26.87 31.27 61.40 12.50 0 92.42
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Figure 6: Global ratio of the activities performed by the subject and recognized by the robot.
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Table 7: Activity recognition of standing trial of test 2.

0.5m 1.0m 1.5m 2.0m
Frame 1400 1400 1400 1400
Matched frame 0 947 1354 416
Accuracy (%) 0.00 67.64 96.71 29.71

stops to keep a distance of 1.2 meters. However, if the subject
moves towards the robot, the robot does notmove backwards,
considering the safety issues. In the daily living scenario, the
optimal distance could not be always kept; thus most activity
recognition errors occurred in such situations. In several
occasions, when the subject was shifting from one scene to
another scene, the distance becomes unstable; the activity
recognition was likely to fail.

For longer distances, around two meters, accuracy was
low too. However, this case should not frequently occur
unless obstacles prevented the robot from moving closer to
the subject. Actually, this did not happen in test 1, for the
scenario and the layout. In the real daily use, if this happens,
the robot should inform the subject somehow.

In these two cases, subject above 2 meters or below 1.2
meters, the robot could inform about the impossibility of
providing accurate recognition.

There are other activities that present low accuracy
results, scenesC andD. In this case, the error in the activity
is produced, but the proximity of objects interferes in the
extraction of the human body contour.

For instance, we can observe that sitting activity recogni-
tion had an average accuracy over 80.24%, butwith a standard
deviation of 9.89%. While the accuracy keeps high for scenes
E and F, the main problem lies in scene C, watching TV.
This activity has a recognition rate of 69.21%.

The low accuracy results in this specific scene are origi-
nated in the process of extracting the human contour, which
is critical for the activity recognition. This process extracts
a region defined by a radius in the surrounding of tracked
point (located in the subject). The proximity of objects at
the same depth compared to the subject prevents the activity
recognition algorithm from excluding them from the body
contour. This fact alters the height-and-width ratio of the
features extracted from the human contour leading to wrong
activity recognition.

Figure 7 illustrates this situation. It presents a snapshot of
the subject performing sceneC and the corresponding con-
tour image generated by the activity recognition algorithm.
In this figure it is noticeable that the subject, wall, and box
are at the same depth, a fact that has a high impact in the
recognition process. The contour image reveals that the wall
and the box besides the subject are included as part of the
body contour. The inclusion of the wall and box as part of
the body contour increases the width of the body contour
affecting the activity recognition process providing a wrong
output. In the example illustrated in Figure 7, the system
recognizes the activity of the subject as “bending” instead of
the right one, “sitting.”

This issue can be solved using the Kinect data and
the map. For a new environment, before it begins subject

Figure 7: The box and the wall are at the same depth of the person.
The activity recognition algorithm limitations include these two
objects as part of the body contour.

monitoring, the robot builds an environmental map through
SLAM (simultaneous localization and mapping), identifying
obstacles such as wall, bed, and tables, as described in [14].

During the robot monitoring operation, it is possible to
analyze, in real-time, the Kinect images and check for every
pixel whether its coordinates correspond with the position of
an obstacle (wall, fridge, etc.) in the environmental map. In
that case, generally, the pixel can be safely removed from the
image as it is not part of the tracked subject. In consequence,
the accuracy of the recognition process will be improved.

The next steps will address the problems observed during
this evaluation. Furthermore, we are working towards an easy
and fast configuration, through which the robot does not
need too much manual calibration for a new environment.
The evaluation of the physiological stress of the users to be
tracked will be another major concern. We argue that the
acceptance of the robot might be improved with the appear-
ance of the robot and its communication capability, without
changing the monitoring function. Since, for prospective
users, the lonely living elderly with motor function impair-
ment and/or with cognitive function impairment, it is very
important and critical to know whether they are safe or not
and their life pattern and rhythm, our ultimate goal is to push
the monitoring robot to real use in daily living.

5. Conclusions

Mobile robots could be a potential solution to home biomon-
itoring for the elderly. After analyzing the results of the two
trial scenarios presented in this paper, it is clear that high
accuracy could not be achieved for all the scenes and there
are still challenges to overcome.

For some of the scenes of the trial experiment the
monitoring system has proven to have an accuracy over
90%. These results are in the range of other human activity
recognition systems, Vigilante 92.6%, Tapia et al. 80.6%,
and COSAR 93% among others [17]. Please note that their
results were achieved with wearable sensors, attached to and
relatively static to human body, but also served as constraints
to the human body. Nevertheless, in our work, there were
other scenes where the accuracy results have to be improved
in order to reach acceptable values.
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We have identified the two main reasons that lead to
wrong recognition: (1) not respecting the minimum distance
to perform activity recognition between robot and subject
and (2) the presence of obstacles close to the subject in a
similar depth thatmay interfere with the process of extracting
the human contour. Further improvement could be reached
by improving the body contour detection algorithm and by
employing semantic maps, which provide semantic informa-
tion for the robot to estimate the activity.

On the other hand, the high accuracy activity recognition
in some of the daily activities that have been tested proves that
mobile robots can perform activity recognition function and
become a real solution for in-home monitoring in the future.
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