15 research outputs found

    Glycine and hyperammonemia : potential target for the treatment of hepatic encephalopathy

    Full text link
    Hepatic encephalopathy (HE) is a neuropsychiatric disorder caused by hepatic dysfunction. Numerous studies dictate that ammonia plays an important role in the pathogenesis of HE, and hyperammonemia can lead to alterations in amino acid homeostasis. Glutamine and glycine are both ammoniagenic amino acids that are increased in liver failure. Modulating the levels of glutamine and glycine has shown to reduce ammonia concentration in hyperammonemia. Ornithine Phenylacetate (OP) has consistently been shown to reduce arterial ammonia levels in liver failure by modulating glutamine levels. In addition to this, OP has also been found to modulate glycine concentration providing an additional ammonia removing effect. Data support that glycine also serves an important role in N-methyl D-aspartate (NMDA) receptor mediated neurotransmission in HE. This potential important role for glycine in the pathogenesis of HE merits further investigations

    Anti-Inflammatory Actions of Vitamin K

    Get PDF
    Naphthoquinone compounds have received attention for their ability to regulate diseases from bacterial and parasite infections through to chronic human diseases. Inflammation is widely considered to be at the root of many chronic diseases. The reports of anti-inflammatory activity of naphthoquinones, including vitamin K1 (phylloquinone) and vitamin K2s (menaquinones), are of interest due to their very low toxicity. Most of the evidence for the anti-inflammatory mechanisms of vitamin K suggests a role in the inhibition of the cell signalling complex nuclear factor kappa-B (NF-κB)

    Neuropathological changes in the brain of pigs with acute liver failure

    Full text link
    Abstract Objective. Cerebral edema is a serious complication of acute liver failure (ALF), which may lead to intracranial hypertension and death. An accepted tenet has been that the blood-brain barrier is intact and that brain edema is primarily caused by a cytotoxic etiology due to hyperammonemia. However, the neuropathological changes in ALF have been poorly studied. Using a well characterized porcine model we aimed to investigate ultrastructural changes in the brain from pigs suffering from ALF. Materials and methods. Sixteen female Norwegian Landrace pigs weighing 27-35 kg were randomised into two groups: ALF (n = 8) and sham operated controls (n = 8). ALF was induced with an end-to-side portacaval shunt followed by ligation of the hepatic arteries. Biopsies were harvested from three different areas of the brain (frontal lobe, cerebellum, and brain stem) following eight hours of ALF and analyzed using electron microscopy. Results. Profound perivascular and interstitial edema were found in all three areas. Disruption of pericytic and astrocytic processes were seen, reflecting breakdown/lesion of the blood-brain barrier in animals suffering from ALF. Furthermore, neurons and axons were edematous and surrounded by vesicles. Severe damage to Purkinje neuron (necrosis) and damaged myelin were seen in the cerebellum and brain stem, respectively. Biopsies from sham operated animals were normal. Conclusions. Our data support the concept that vasogenic brain edema plays an important role in the development of intracranial hypertension in pigs with ALF

    Association of reduced extracellular brain ammonia, lactate, and intracranial pressure in pigs with acute liver failure

    Full text link
    We previously demonstrated in pigs with acute liver failure (ALF) that albumin dialysis using the molecular adsorbents recirculating system (MARS) attenuated a rise in intracranial pressure (ICP). This was independent of changes in arterial ammonia, cerebral blood flow and inflammation, allowing alternative hypotheses to be tested. The aims of the present study were to determine whether changes in cerebral extracellular ammonia, lactate, glutamine, glutamate, and energy metabolites were associated with the beneficial effects of MARS on ICP. Three randomized groups [sham, ALF (induced by portacaval anastomosis and hepatic artery ligation), and ALF+MARS] were studied over a 6-hour period with a 4-hour MARS treatment given beginning 2 hours after devascularization. Using cerebral microdialysis, the ALF-induced increase in extracellular brain ammonia, lactate, and glutamate was significantly attenuated in the ALF+MARS group as well as the increases in extracellular lactate/pyruvate and lactate/glucose ratios. The percent change in extracellular brain ammonia correlated with the percent change in ICP (r(2) = 0.511). Increases in brain lactate dehydrogenase activity and mitochondrial complex activity for complex IV were found in ALF compared with those in the sham, which was unaffected by MARS treatment. Brain oxygen consumption did not differ among the study groups. Conclusion: The observation that brain oxygen consumption and mitochondrial complex enzyme activity changed in parallel in both ALF- and MARS-treated animals indicates that the attenuation of increased extracellular brain ammonia (and extracellular brain glutamate) in the MARS-treated animals reduces energy demand and increases supply, resulting in attenuation of increased extracellular brain lactate. The mechanism of how MARS reduces extracellular brain ammonia requires further investigation

    Contractile response of femoral arteries in pigs with acute liver failure

    Full text link
    BACKGROUND: Acute liver failure (ALF) is characterized haemodynamically by a progressive hyperdynamic circulation. The pathophysiological mechanism is unknown, but impaired contractility of vascular smooth muscle may play an important role. The aim of this study was to evaluate the vascular response to stimulation with norepinephrine and angiotensin II in endothelium-denuded femoral artery rings. METHODS: Norwegian Landrace pigs weighing 27.1 +/- 0.5 kg (mean +/- sx (standard error of the mean)) were used. ALF was induced by performing a portacaval shunt followed by ligation of the hepatic arteries (n = 6). Sham-operated animals served as controls (n = 5). Cumulative isometric concentration contraction curves were obtained after in vitro stimulation of the femoral artery rings with either angiotensin II (10(-13) - 10(-5) mol/L) or norepinephrine (10(-13) - 10(-3) mol/L). RESULTS: Pigs suffering from ALF developed a hyperdynamic circulation with an increased cardiac index (P = 0.017) and decreased systemic vascular resistance index (P = 0.015). Studies of the hind leg revealed a decreased vascular resistance index and increased blood flow compared to sham-operated controls (P = 0.003 and P = 0.01, respectively). Angiotensin II caused a concentration-dependent contraction of the arterial segments, with no significant differences in vascular responses between the two groups. Maximum force generated did not differ (55 +/- 7 versus 56 +/- 7 mN, P = 0.95). Furthermore, there were no differences for norepinephrine in the cumulative concentration-response curves and the maximum contractile force was not significantly different (87 +/- 8 versus 93 +/- 16 mN, P = 0.55). CONCLUSIONS: This study documents for the first time that there are no signs of endothelium-independent peripheral vascular hyporesponsiveness to angiotensin II and norepinephrine in pigs with ALF

    Albumin dialysis : a new therapeutic strategy for intoxication from protein-bound drugs

    Full text link
    Abstract Objective: Although water-soluble drugs can be removed by haemofiltration/haemodialysis, morbidity and mortality from intoxication with protein-bound drugs remains high. The present study investigates whether albumin dialysis in the form of the Molecular Adsorbents Recirculating System (MARS) is effective in removal of protein-bound drugs. Design: Prospective animal study. Setting: Surgical research laboratory in a university hospital. Subjects: Seven female Norwegian Landrace pigs. Intervention: We studied whether midazolam (97% albuminbound) and fentanyl (85% alpha-1- acid glycoprotein-bound), administered as anaesthetics to pigs with induced acute liver failure, could be removed by MARS dialysis lasting for 4 h. Measurements: After 4 h of dialysis, total and free anaesthetic concentrations were measured in the blood and dialysate from different segments of the MARS circuit. Main results: Midazolam: total plasma concentrations fell by 47.1€2.1% (in 4 h) across the MARS filter (p<0.01). The charcoal component of the system reduced the total dialysate drug concentration by 16.4€2.2% (p<0.05). Free midazolam removal followed a similar pattern. Fentanyl: total plasma concentrations fell by 56.1€2.4% (in 4 h) across the MARS filter (p<0.01). Clearance of fentanyl from the dialysate by the charcoal was 70€0.7% at 4 h (p<0.001). Conclusions: The results of the study show that MARS can remove both albumin and other protein-bound drugs efficiently from the plasma, and it may have a place for the treatment of patients suffering from intoxication with this class of compounds

    Systemic and regional hemodynamics in pigs with acute liver failure and the effect of albumin dialysis

    Full text link
    OBJECTIVE: Acute liver failure (ALF) is haemodynamically characterized by a hyperdynamic circulation. The aims of this study were to investigate the systemic and regional haemodynamics in ALF, to measure changes in nitric oxide metabolites (NOx) and to evaluate whether these haemodynamic disturbances could be attenuated with albumin dialysis. MATERIAL AND METHODS: Norwegian Landrace pigs (23-30 kg) were randomly allocated to groups as controls (sham-operation, n = 8), ALF (hepatic devascularization, n = 8) and ALF + albumin dialysis (n = 8). Albumin dialysis was started 2 h after ALF induction and continued for 4 h. Systemic and regional haemodynamics were monitored. Creatinine clearance, nitrite/nitrate and catecholamines were measured. A repeated measures ANOVA was used to analyse the data. RESULTS: In the ALF group, the cardiac index increased (PGT < 0.0001), while mean arterial pressure (PG = 0.02) and systemic vascular resistance decreased (PGT < 0.0001). Renal resistance (PG = 0.04) and hind-leg resistance (PGT = 0.003) decreased in ALF. There was no difference in jejunal blood flow between the groups. ALF pigs developed renal dysfunction with increased serum creatinine (PGT = 0.002) and decreased creatinine clearance (P = 0.02). Catecholamines were significantly higher in ALF, but NOx levels were not different. Albumin dialysis did not attenuate these haemodynamic or renal disturbances. CONCLUSIONS: The haemodynamic disturbances during the early phase of ALF are characterized by progressive systemic vasodilatation with no associated changes in metabolites of NO. Renal vascular resistance decreased and renal dysfunction developed independently of changes in renal blood flow. After 4 h of albumin dialysis there was no attenuation of the haemodynamic or renal disturbances

    Effect of albumin dialysis on intracranial pressure increase in pigs with acute liver failure: a randomized study

    Full text link
    BACKGROUND: Increased intracranial pressure (ICP) worsens the outcome of acute liver failure (ALF). This study investigates the underlying pathophysiological mechanisms and evaluates the therapeutic effect of albumin dialysis in ALF with use of the Molecular Adsorbents Recirculating System without hemofiltration/dialysis (modified, M-MARS). METHODS: Pigs were randomized into three groups: sham, ALF, and ALF + M-MARS. ALF was induced by hepatic devascularization (time = 0). M-MARS began at time = 2 and ended with the experiment at time = 6. ICP, arterial ammonia, brain water, cerebral blood flow (CBF), and plasma inflammatory markers were measured. RESULTS: ICP and arterial ammonia increased significantly over 6 hrs in the ALF group, in comparison with the sham group. M-MARS attenuated (did not normalize) the increased ICP in the ALF group, whereas arterial ammonia was unaltered by M-MARS. Brain water in the frontal cortex (grey matter) and in the subcortical white matter at 6 hrs was significantly higher in the ALF group than in the sham group. M-MARS prevented a rise in water content, but only in white matter. CBF and inflammatory mediators remained unchanged in all groups. CONCLUSION: The initial development of cerebral edema and increased ICP occurs independently of CBF changes in this noninflammatory model of ALF. Factor(s) other than or in addition to hyperammonemia are important, however, and may be more amenable to alteration by albumin dialysis

    Liver sinusoidal endothelial cells represents an important blood clearance system in pigs

    Get PDF
    Background: Numerous studies in rats and a few other mammalian species, including man, have shown that the sinusoidal cells constitute an important part of liver function. In the pig, however, which is frequently used in studies on liver transplantation and liver failure models, our knowledge about the function of hepatic sinusoidal cells is scarce. We have explored the scavenger function of pig liver sinusoidal endothelial cells (LSEC), a cell type that in other mammals performs vital elimination of an array of waste macromolecules from the circulation. Results: 125I-macromolecules known to be cleared in the rat via the scavenger and mannose receptors were rapidly removed from the pig circulation, 50% of the injected dose being removed within the first 2–5 min following injection. Fluorescently labeled microbeads (2 μm in diameter) used to probe phagocytosis accumulated in Kupffer cells only, whereas fluorescently labeled soluble macromolecular ligands for the mannose and scavenger receptors were sequestered only by LSEC. Desmin-positive stellate cells accumulated no probes. Isolation of liver cells using collagenase perfusion through the portal vein, followed by various centrifugation protocols to separate the different liver cell populations yielded 280 × 107 (range 50–890 × 107) sinusoidal cells per liver (weight of liver 237.1 g (sd 43.6)). Use of specific anti-Kupffer cell- and anti-desmin antibodies, combined with endocytosis of fluorescently labeled macromolecular soluble ligands indicated that the LSEC fraction contained 62 × 107 (sd 12 × 107) purified LSEC. Cultured LSEC avidly endocytosed ligands for the mannose and scavenger receptors. Conclusions: We show here for the first time that pig LSEC, similar to what has been found earlier in rat LSEC, represent an effective scavenger system for removal of macromolecular waste products from the circulation
    corecore