7 research outputs found
Recommended from our members
CNSC-15. MITOCHONDRIA TRANSFER VIA GLIOMA-ASTROCYTE NETWORK MICROTUBES REPROGRAMS TUMOR CELLS FOR ENHANCED TUMORIGENICITY
Abstract Glioblastoma (GBM) interaction with neural cells is critical to its pathobiology. Emerging evidence suggests that GBM cells form an interconnected network with astrocytes, facilitating tumor persistence. Given reports of intercellular transfer of mitochondria in ischemic stroke and other pathologic disease states outside the CNS, we hypothesized that this network facilitates mitochondria transfer from astrocytes to GBM with protumorigenic sequelae. Employing transgenic mice and intracranial viral vector transductions in rats, we found that mitochondria transfer from the TME to GBM occurs in intracranial mouse and patient-derived xenograft models (in nude rats) of GBM. Mitochondria transfer from bone marrow-derived immune cells was minimal in bone marrow chimera mouse models of orthotopic GBM, suggesting that neural cells were the primary mitochondria donors. We confirmed this in vitro, where mouse astrocytes were the major mitochondria donors, followed by microglia and to a much smaller extent bone marrow-derived macrophages. Immortalized human astrocytes transduced with mitochondria-localized mCherry (mito-mCherry) also transferred their mitochondria to numerous patient-derived glioma stem cell (GSC) models at rates of ~5-20%, assessed by flow cytometry and confocal microscopy. Mitochondria were visualized along intercellular actin bridges, structurally resembling tumor microtubes. Blocking actin polymerization or knocking down GAP43 (previously linked to microtube formation) decreased mitochondria transfer from astrocytes to GBM in vitro. Functionally, sorted mito-mCherry+ patient-derived GSCs displayed higher mitochondrial respiration, metabolomic reprogramming and proliferation-promoting phospho-signaling. Mito-mCherry+ GBM cells were more likely to be in the proliferative G2/M phases of the cell cycle, and when sorted from co-cultures had high self-renewal (in vitro) and tumor-initiating capacity (in vivo xenograft mouse model). In ongoing work, we are investigating the role of retrograde GBM to astrocyte transfer of mitochondria by dual-color labeling of the organelle, as well as further delineating the protein machinery involved in this fundamental protumorigenic process, with the goal of identifying novel therapeutic targets
GAP43-dependent mitochondria transfer from astrocytes enhances glioblastoma tumorigenicity
The transfer of intact mitochondria between heterogeneous cell types has been confirmed in various settings, including cancer. However, the functional implications of mitochondria transfer on tumor biology are poorly understood. Here we show that mitochondria transfer is a prevalent phenomenon in glioblastoma (GBM), the most frequent and malignant primary brain tumor. We identified horizontal mitochondria transfer from astrocytes as a mechanism that enhances tumorigenesis in GBM. This transfer is dependent on network-forming intercellular connections between GBM cells and astrocytes, which are facilitated by growth-associated protein 43 (GAP43), a protein involved in neuron axon regeneration and astrocyte reactivity. The acquisition of astrocyte mitochondria drives an increase in mitochondrial respiration and upregulation of metabolic pathways linked to proliferation and tumorigenicity. Functionally, uptake of astrocyte mitochondria promotes cell cycle progression to proliferative G2/M phases and enhances self-renewal and tumorigenicity of GBM. Collectively, our findings reveal a host-tumor interaction that drives proliferation and self-renewal of cancer cells, providing opportunities for therapeutic development