56 research outputs found
Evolution of Privacy Loss in Wikipedia
The cumulative effect of collective online participation has an important and
adverse impact on individual privacy. As an online system evolves over time,
new digital traces of individual behavior may uncover previously hidden
statistical links between an individual's past actions and her private traits.
To quantify this effect, we analyze the evolution of individual privacy loss by
studying the edit history of Wikipedia over 13 years, including more than
117,523 different users performing 188,805,088 edits. We trace each Wikipedia's
contributor using apparently harmless features, such as the number of edits
performed on predefined broad categories in a given time period (e.g.
Mathematics, Culture or Nature). We show that even at this unspecific level of
behavior description, it is possible to use off-the-shelf machine learning
algorithms to uncover usually undisclosed personal traits, such as gender,
religion or education. We provide empirical evidence that the prediction
accuracy for almost all private traits consistently improves over time.
Surprisingly, the prediction performance for users who stopped editing after a
given time still improves. The activities performed by new users seem to have
contributed more to this effect than additional activities from existing (but
still active) users. Insights from this work should help users, system
designers, and policy makers understand and make long-term design choices in
online content creation systems
Authentic self-expression on social media is associated with greater subjective well-being
Social media users face a tension between presenting themselves in an idealized or authentic way. Here, we explore how prioritizing one over the other impacts users’ well-being. We estimate the degree of self-idealized vs. authentic self-expression as the proximity between a user’s self-reported personality and the automated personality judgements made on the basis Facebook Likes and status updates. Analyzing data of 10,560 Facebook users, we find that individuals who are more authentic in their self-expression also report greater Life Satisfaction. This effect appears consistent across different personality profiles, countering the proposition that individuals with socially desirable personalities benefit from authentic self-expression more than others. We extend this finding in a pre-registered, longitudinal experiment, demonstrating the causal relationship between authentic posting and positive affect and mood on a within-person level. Our findings suggest that the extent to which social media use is related to well-being depends on how individuals use it
Studying user income through language, behaviour and affect in social media
Automatically inferring user demographics from social media posts is useful for both social science research and a range of downstream applications in marketing and politics. We present the first extensive study where user behaviour on Twitter is used to build a predictive model of income. We apply non-linear methods for regression, i.e. Gaussian Processes, achieving strong correlation between predicted and actual user income. This allows us to shed light on the factors that characterise income on Twitter and analyse their interplay with user emotions and sentiment, perceived psycho-demographics and language use expressed through the topics of their posts. Our analysis uncovers correlations between different feature categories and income, some of which reflect common belief e.g. higher perceived education and intelligence indicates higher earnings, known differences e.g. gender and age differences, however, others show novel findings e.g. higher income users express more fear and anger, whereas lower income users express more of the time emotion and opinions
Computational personality recognition in social media
A variety of approaches have been recently proposed to automatically infer users' personality from their user generated content in social media. Approaches differ in terms of the machine learning algorithms and the feature sets used, type of utilized footprint, and the social media environment used to collect the data. In this paper, we perform a comparative analysis of state-of-the-art computational personality recognition methods on a varied set of social media ground truth data from Facebook, Twitter and YouTube. We answer three questions: (1) Should personality prediction be treated as a multi-label prediction task (i.e., all personality traits of a given user are predicted at once), or should each trait be identified separately? (2) Which predictive features work well across different on-line environments? (3) What is the decay in accuracy when porting models trained in one social media environment to another
Mining Big Data for Tourist Hot Spots: Geographical Patterns of Online Footprints
Understanding the complex, and often unequal, spatiality of tourist
demand in urban contexts requires other methodologies, among which the information base available online and in social networks has gained prominence. Innovation
supported by Information and Communication Technologies in terms of data access
and data exchange has emerged as a complementary supporting tool for the more traditional data collection techniques currently in use, particularly, in urban destinations
where there is the need to more (near)real-time monitoring. The capacity to collect
and analise massive amounts of data on individual and group behaviour is leading to
new data-rich research approaches. This chapter addresses the potential for discovering geographical insights regarding tourists’ spatial patterns within a destination,
based on the analysis of geotagged data available from two social networks.
·info:eu-repo/semantics/publishedVersio
Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world
Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic.
Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality.
Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States.
Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis.
Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection
- …