157 research outputs found

    Effect of Different Industrial Wastes on Soil Quality at Different Locations of Egypt

    Get PDF
    To declare the effect of pollution by industrial emissions on the agricultural land in some industrial areas of Egypt, soil and wastewater samples were collected from five locations surroundings to industrial factories. Samples of each site were taken to the windward at 0, 500, 1000, 1500 and 2000 meter away from the boundary of each factory. The obtained results of chemical analysis can be summarized as follows: 1. The quality of water samples collected from all sites are within the permissible limits for irrigation except this from El-Nasr company of chemical and fertilizers at Talkha which had excessive loaded with organic contaminants. 2. The concentrations of some heavy metals (Fe, Mn, Zn, Cu and Pb) in the tested soil samples decreased significantly with increasing the distance away from the source of pollution. Also, dominance of such heavy metals in each site followed the decreasing order: Fe > Mn > Zn > Cu > Pb. These values were much higher than that obtained in the virgin soils (non-polluted soils). 3. The values of soil respiration (microbile activity in the soil samples) significantly increased as the distance from the source of pollution increase at all locations under investigation. An opposite trend was marked between available heavy metals content and microbile activity (r = -0.94)

    Efficacy of plant extracts in controlling wheat leaf rust disease caused by Puccinia triticina

    Get PDF
    AbstractThe efficacy of eight plant extracts (garlic, clove, garden quinine, Brazilian pepper, anthi mandhaari, black cumin, white cedar and neem) in controlling leaf rust disease of wheat was investigated in vitro and in vivo. In vitro, all treatments inhibited spore germination by more than 93%. Neem extract recorded 98.99% inhibition of spore germination with no significant difference from the fungicide Sumi-8 (100%). Under greenhouse conditions, seed soaking application in neem extract (at concentration of 2ml/L) resulted in 36.82% reduction in the number of pustules/leaf compared with the untreated control. Foliar spraying of plant extracts on wheat seedlings decreased the number of pustules/leaf. Foliar spraying of plant extracts four days after inoculation led to the highest resistance response of wheat plants against leaf rust pathogen. Spray application of wheat seedlings with neem, clove and garden quinine extracts, four days after inoculation with leaf rust pathogen completely prevented rust development (100% disease control) and was comparable with the fungicide Sumi-8. Foliar spray application of wheat plants at mature stage with all plant extracts has significantly reduced the leaf rust infection (average coefficient of infection, ACI) compared with the untreated control and neem was the most effective treatment. This was reflected on grain yield components, whereas the 1000-kernel weight and the test weight were improved whether under one- or two-spray applications, with two-spray application being more effective in this regard. Thus, it could be concluded that plant extracts may be useful to control leaf rust disease in Egypt as a safe alternative option to chemical fungicides

    Design and synthesis of (2-oxo-1,2-dihydroquinolin-4-yl)-1,2,3-triazole derivatives via click reaction: Potential apoptotic antiproliferative agents

    Get PDF
    A mild and versatile method based on Cu-catalyzed [2+3] cycloaddition (Huisgen-Meldal-Sharpless reaction) was developed to tether 3,3’-((4-(prop-2-yn-1-yloxy)phenyl)methylene)bis(4-hydroxyquinolin-2(1H)-ones) with 4-azido-2-quinolones in good yields. This methodology allowed attaching three quinolone molecules via a triazole linker with the proposed mechanism. The products are interesting precursors for their anti-proliferative activity. Compound 8g was the most active one, achieving IC50_{50} = 1.2 ± 0.2 ”M and 1.4 ± 0.2 ”M against MCF-7 and Panc-1 cell lines, respectively. Moreover, cell cycle analysis of cells MCF-7 treated with 8g showed cell cycle arrest at the G2/M phase (supported by Caspase-3,8,9, Cytochrome C, BAX, and Bcl-2 studies). Additionally, significant pro-apoptotic activity is indicated by annexin V-FITC staining

    Design, synthesis, crystal structures and biological evaluation of some 1,3-thiazolidin-4-ones as dual CDK2/EGFR potent inhibitors with potential apoptotic antiproliferative effects

    Get PDF
    A series of novel thiazolidine-4-one derivatives was synthesized by reacting 1,4disubstituted hydrazine carbothioamides with diethyl azodicarboxylate. The structures were confirmed by spectroscopic data as well as single-crystal X-ray analyses. The antiproliferative activity of the synthesized compounds was investigated against four human cancer cell lines using an MTT assay. Compounds 5d, 5e, and 5f revealed the most potent antiproliferative activity with GI50 values ranging from 0.70 mM to 1.20 mM, compared to doxorubicin GI50 value = 1.10 mM. Compounds 5d, 5e, and 5f were further investigated for their inhibitory activities against CDK2 and EGFR as potential targets for their molecular mechanism. Compounds 5e and 5f have showed potent inhibitory activity to CDK2 enzyme with IC50 values of 18 and 14 nM, which is more potent than the reference dinaciclib (IC50 = 20 nM). Moreover, compounds 5e and 5f were the most potent EGFR inhibitors, with IC50 values of 93 and 87 nM, respectively, compared to the reference erlotinib (IC50 = 70 nM). In addition, the most potent derivatives were tested for their apoptotic activity against caspases 3, 8, and 9, and the results showed that compounds 5d, 5e, and 5f revealed a greater increase in active caspases 3,8 and 9 than doxorubicin. Also, compounds 5d, 5e, and 5f elevated cytochrome C levels in the MCF-7 human breast cancer cell line by about 15.5, 15.8, and 16.5 times, respectively. Finally, a molecular docking study was performed to investigate the binding sites of these compounds within the active sites of CDK2 and EGFR targets, and the results confirmed that the most potent CDK2 and EGFR inhibitor 5h also have showed the highest docking (c) 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).Peer reviewe

    Design, synthesis, crystal structures and biological evaluation of some 1,3-thiazolidin-4-ones as dual CDK2/EGFR potent inhibitors with potential apoptotic antiproliferative effects

    Get PDF
    A series of novel thiazolidine-4-one derivatives was synthesized by reacting 1,4-disubstituted hydrazine carbothioamides with diethyl azodicarboxylate. The structures were confirmed by spectroscopic data as well as single-crystal X-ray analyses. The antiproliferative activity of the synthesized compounds was investigated against four human cancer cell lines using an MTT assay. Compounds 5d, 5e, and 5f revealed the most potent antiproliferative activity with GI50_{50} values ranging from 0.70 ”M to 1.20 ”M, compared to doxorubicin GI50_{50} value = 1.10 ”M. Compounds 5d, 5e, and 5f were further investigated for their inhibitory activities against CDK2 and EGFR as potential targets for their molecular mechanism. Compounds 5e and 5f have showed potent inhibitory activity to CDK2 enzyme with IC50_{50} values of 18 and 14 nM, which is more potent than the reference dinaciclib (IC50_{50} = 20 nM). Moreover, compounds 5e and 5f were the most potent EGFR inhibitors, with IC50_{50} values of 93 and 87 nM, respectively, compared to the reference erlotinib (IC50_{50} = 70 nM). In addition, the most potent derivatives were tested for their apoptotic activity against caspases 3, 8, and 9, and the results showed that compounds 5d, 5e, and 5f revealed a greater increase in active caspases 3,8 and 9 than doxorubicin. Also, compounds 5d, 5e, and 5f elevated cytochrome C levels in the MCF-7 human breast cancer cell line by about 15.5, 15.8, and 16.5 times, respectively. Finally, a molecular docking study was performed to investigate the binding sites of these compounds within the active sites of CDK2 and EGFR targets, and the results confirmed that the most potent CDK2 and EGFR inhibitor 5h also have showed the highest docking score

    Synthesis and Structure Determination of Substituted Thiazole Derivatives as EGFR/BRAFV600E^{V600E} Dual Inhibitors Endowed with Antiproliferative Activity

    Get PDF
    2,3,4-trisubstituted thiazoles 3a–i, having a methyl group in position four, were synthesized by the reaction of 1,4-disubstituted thiosemicarbazides with chloroacetone in ethyl acetate/Et3_3N at room temperature or in ethanol under reflux. The structures of new compounds were determined using NMR spectroscopy, mass spectrometry, and elemental analyses. Moreover, the structure of compound 3a was unambiguously confirmed with X-ray analysis. The cell viability assay of 3a–i at 50 ”M was greater than 87%, and none of the tested substances were cytotoxic. Compounds 3a–i demonstrated good antiproliferative activity, with GI50_{50} values ranging from 37 to 86 nM against the four tested human cancer cell lines, compared to the reference erlotinib, which had a GI50_{50} value of 33 nM. The most potent derivatives were found to be compounds 3a, 3c, 3d, and 3f, with GI50 values ranging from 37 nM to 54 nM. The EGFR-TK and BRAFV600E^{V600E} inhibitory assays’ results matched the antiproliferative assay’s results, with the most potent derivatives, as antiproliferative agents, also being the most potent EGFR and BRAFV600E^{V600E} inhibitors. The docking computations were employed to investigate the docking modes and scores of compounds 3a, 3c, 3d, and 3f toward BRAFV600E^{V600E} and EGFR. Docking computations demonstrated the good affinity of compound 3f against BRAFV600E^{V600E} and EGFR, with values of −8.7 and −8.5 kcal/mol, respectively

    Synthesis of novel amidines via one-pot three component reactions: Selective topoisomerase I inhibitors with antiproliferative properties

    Get PDF
    Novel series of amidines were synthesized via the interaction between alicyclic amines, cyclic ketones, and a highly electrophilic 4-azidoquinolin-2(1H)-ones without any catalyst or additive. All the obtained products were elucidated based on NMR spectroscopy, mass spectrometry, and elemental analysis. The reaction conditions were optimized using cyclohexanone (2), piperidine (3a), and 4-azido-quinolin-2(1H)-one (1a) under an air atmosphere. The new compounds 4a-l and 5a-c were tested for antiproliferative activity against four cancer cell lines using doxorubicin as a reference drug. The most potent derivatives were compounds 4b, 4d, 4e, 4i, and 5c, with GI50_{50} ranging from 1.00 ”M to 1.50 ”M. Compound 5c was the most effective derivative against the four cancer cell lines, outperforming doxorubicin. The compounds 4b, 4d, 4e, 4i, and 5c were studied further as topoisomerase I and IIα inhibitors. The compounds tested showed selective inhibition of topo I over topo IIα. Finally, docking studies explain why these compounds prefer topo I over topo IIα

    Novel 1,5-diaryl pyrazole-3-carboxamides as selective COX-2/sEH inhibitors with analgesic, anti-inflammatory, and lower cardiotoxicity effects

    Get PDF
    Funding Information: The authors extend their appreciation to the Deanship of Scientific Research at Jouf University for funding this work through research grant number (DSR2020-04-421 )Peer reviewedPostprin
    • 

    corecore