88 research outputs found

    Gene Therapy Using Tet-Repressor System to Modulate Prostate Tumor Microenvironment

    Get PDF
    Prostate cancer is the most commonly diagnosed malignancy in men in the United States and is projected to be the third most frequent cause of male cancer-related deaths in 2007 after lung and skin cancers. The initial treatment for prostate cancer at early stages is prostatectomy or radiation, which usually is curative. However, approximately 20% of patients are not cured by such treatments and their cancer recurs, sometimes with long latencies. In other patients prostate cancer is diagnosed only after the cancer has metastasized and there are no effective therapies at this stage. Therefore immunotherapy seems to be a promising approach to treat metastatic prostate cancer through enhancing tumor-specific T cell responses. In this regard, there is a growing interest in the generation of fully competent dendritic cells (DCs) that are known to be potent antigen presenting cells and capable of activating naïve T cells. While DCs need to acquire a mature phenotype to induce T cell activation, it is known that the microenvironment of many tumors including prostate tumors is immunosuppressive and prevents DC maturation. We used the transgenic adenocarcinoma of mouse prostate (TRAMP) model to show that DCs infiltrating prostate tumors are phenotypically immature and using an in vitro assay we showed that TRAMPC2 cells but not granulocytes are the major inducers of this phenotype. We used a well-defined orthotopic prostate cancer model to study chemokine/cytokine vaccines. Expression of secondary lymphoid tissue chemokine (SLC), granulocyte macrophage-colony stimulating factor (GM-CSF) or CD40 ligand (CD4OL) in the TRAMP tumor microenvironment (TME) was chosen to induce co-localization of T cells and DCs and their interaction, expand DCs and induce their maturation. In order to make a clinically relevant model in this study we took advantage of the tetracycline inducible expression system that enabled us to control the expression of the chemokines and cytokines during the course of study. We showed that expression of SLC in the TRAMP TME inhibited tumor growth, decreased metastasis and increased survival of tumor bearing mice. Although CD4OL transfected TRAMPC2 cells did not grow in vivo and GMCSF transfected TRAMPC2 cells failed to grow tumors after in vitro passages, using in vitro assays we showed that these molecules reversed the inhibition of DC maturation induced by TRAMPC2 cells

    A phase I study to assess safety, pharmacokinetics, and pharmacodynamics of a vaginal insert containing tenofovir alafenamide and elvitegravir

    Get PDF
    BackgroundNew multi-purpose prevention technology (MPT) products are needed to prevent human immunodeficiency virus (HIV) and herpes simplex virus type 2 (HSV2). In this study, we evaluated a fast-dissolve insert that may be used vaginally or rectally for prevention of infection.ObjectiveTo describe the safety, acceptability, multi-compartment pharmacokinetics (PK), and in vitro modeled pharmacodynamics (PD) after a single vaginal dose of an insert containing tenofovir alafenamide (TAF) and elvitegravir (EVG) in healthy women.MethodsThis was a Phase I, open-label, study. Women (n=16) applied one TAF (20mg)/EVG (16mg) vaginal insert and were randomized (1:1) to sample collection time groups for up to 7 days post dosing. Safety was assessed by treatment-emergent adverse events (TEAEs). EVG, TAF and tenofovir (TFV) concentrations were measured in plasma, vaginal fluid and tissue, and TFV-diphosphate (TFV-DP) concentration in vaginal tissue. PD was modeled in vitro by quantifying the change in inhibitory activity of vaginal fluid and vaginal tissue against HIV and HSV2 from baseline to after treatment. Acceptability data was collected by a quantitative survey at baseline and post treatment.ResultsThe TAF/EVG insert was safe, with all TEAEs graded as mild, and acceptable to participants. Systemic plasma exposure was low, consistent with topical delivery, while high mucosal levels were detected, with median TFV vaginal fluid concentrations exceeding 200,000 ng/mL and 1,000 ng/mL for up to 24 hours and 7 days post dosing, respectively. All participants had vaginal tissue EVG concentrations of > 1 ng/mg at 4 and 24 hours post dosing. The majority had tissue TFV-DP concentrations exceeding 1000 fmol/mg by 24 – 72 hours post dosing. Vaginal fluid inhibition of HIV-1 and HSV-2 in vitro significantly increased from baseline and was similarly high at 4 and 24 hours post dosing. Consistent with high tissue TFV-DP concentrations, p24 HIV antigen production from ectocervical tissues infected ex vivo with HIV-1 significantly decreased from baseline at 4 hours post dosing. HSV-2 production from tissue also decreased post treatment.ConclusionsA single dose of TAF/EVG inserts met PK benchmarks, with PK data supporting an extended window of high mucosal protection. PD modeling supports mucosal protection against both HIV-1 and HSV-2. The inserts were safe and highly acceptable.Clinical trial registrationClinicalTrials.gov, identifier NCT03762772

    Regulated Expression of CCL21 in the Prostate Tumor Microenvironment Inhibits Tumor Growth and Metastasis in an Orthotopic Model of Prostate Cancer

    Get PDF
    Currently there are no curative therapies available for patients with metastatic prostate cancer. Thus, novel therapies are needed to treat this patient population. Immunotherapy represents one promising approach for the elimination of occult metastatic tumors. However, the prostate tumor microenvironment (TME) represents a hostile environment capable of suppressing anti-tumor immunity and effector cell function. In view of this immunosuppressive activity, we engineered murine prostate cancer cells with regulated expression (tet-on) of CCL21. Prostate tumor cells implanted orthotopically produced primary prostate tumors with predictable metastatic disease in draining lymph nodes and distant organs. Expression of CCL21 in the prostate TME enhanced survival, inhibited tumor growth and decreased the frequency of local (draining lymph node) and distant metastasis. Therefore, these studies provide a strong rationale for further evaluation of CCL21 in tumor immunity and its use in cancer immunotherapy

    Novel CCL21-Vault Nanocapsule Intratumoral Delivery Inhibits Lung Cancer Growth

    Get PDF
    Based on our preclinical findings, we are assessing the efficacy of intratumoral injection of dendritic cells (DC) transduced with an adenoviral vector expressing the secondary lymphoid chemokine (CCL21) gene (Ad-CCL21-DC) in a phase I trial in advanced non-small cell lung cancer (NSCLC). While this approach shows immune enhancement, the preparation of autologous DC for CCL21 genetic modification is cumbersome, expensive and time consuming. We are evaluating a non-DC based approach which utilizes vault nanoparticles for intratumoral CCL21 delivery to mediate antitumor activity in lung cancer.Here we describe that vault nanocapsule platform for CCL21 delivery elicits antitumor activity with inhibition of lung cancer growth. Vault nanocapsule packaged CCL21 (CCL21-vaults) demonstrated functional activity in chemotactic and antigen presenting activity assays. Recombinant vaults impacted chemotactic migration of T cells and this effect was predominantly CCL21 dependent as CCL21 neutralization abrogated the CCL21 mediated enhancement in chemotaxis. Intratumoral administration of CCL21-vaults in mice bearing lung cancer enhanced leukocytic infiltrates (CXCR3(+)T, CCR7(+)T, IFNγ(+)T lymphocytes, DEC205(+) DC), inhibited lung cancer tumor growth and reduced the frequencies of immune suppressive cells [myeloid derived suppressor cells (MDSC), T regulatory cells (Treg), IL-10 T cells]. CCL21-vaults induced systemic antitumor responses by augmenting splenic T cell lytic activity against parental tumor cells.This study demonstrates that the vault nanocapsule can efficiently deliver CCL21 to sustain antitumor activity and inhibit lung cancer growth. The vault nanocapsule can serve as an "off the shelf" approach to deliver antitumor cytokines to treat a broad range of malignancies

    Randomized controlled phase IIa clinical trial of safety, pharmacokinetics and pharmacodynamics of tenofovir and tenofovir plus levonorgestrel releasing intravaginal rings used by women in Kenya

    Get PDF
    IntroductionGlobally, many young women face the overlapping burden of HIV infection and unintended pregnancy. Protection against both may benefit from safe and effective multipurpose prevention technologies.MethodsHealthy women ages 18–34 years, not pregnant, seronegative for HIV and hepatitis B surface antigen, not using hormonal contraception, and at low risk for HIV were randomized 2:2:1 to continuous use of a tenofovir/levonorgestrel (TFV/LNG), TFV, or placebo intravaginal ring (IVR). In addition to assessing genital and systemic safety, we determined TFV concentrations in plasma and cervicovaginal fluid (CVF) and LNG levels in serum using tandem liquid chromatography-mass spectrometry. We further evaluated TFV pharmacodynamics (PD) through ex vivo CVF activity against both human immunodeficiency virus (HIV)-1 and herpes simplex virus (HSV)-2, and LNG PD using cervical mucus quality markers and serum progesterone for ovulation inhibition.ResultsAmong 312 women screened, 27 were randomized to use one of the following IVRs: TFV/LNG (n = 11); TFV-only (n = 11); or placebo (n = 5). Most screening failures were due to vaginal infections. The median days of IVR use was 68 [interquartile range (IQR), 36–90]. Adverse events (AEs) were distributed similarly among the three arms. There were two non-product related AEs graded >2. No visible genital lesions were observed. Steady state geometric mean amount (ssGMA) of vaginal TFV was comparable in the TFV/LNG and TFV IVR groups, 43,988 ng/swab (95% CI, 31,232, 61,954) and 30337 ng/swab (95% CI, 18,152, 50,702), respectively. Plasma TFV steady state geometric mean concentration (ssGMC) was <10 ng/ml for both TFV IVRs. In vitro, CVF anti-HIV-1 activity showed increased HIV inhibition over baseline following TFV-eluting IVR use, from a median of 7.1% to 84.4% in TFV/LNG, 15.0% to 89.5% in TFV-only, and −27.1% to −20.1% in placebo participants. Similarly, anti-HSV-2 activity in CVF increased >50 fold after use of TFV-containing IVRs. LNG serum ssGMC was 241 pg/ml (95% CI 185, 314) with rapid rise after TFV/LNG IVR insertion and decline 24-hours post-removal (586 pg/ml [95% CI 473, 726] and 87 pg/ml [95% CI 64, 119], respectively).ConclusionTFV/LNG and TFV-only IVRs were safe and well tolerated among Kenyan women. Pharmacokinetics and markers of protection against HIV-1, HSV-2, and unintended pregnancy suggest the potential for clinical efficacy of the multipurpose TFV/LNG IVR.Clinical Trial RegistrationNCT03762382 [https://clinicaltrials.gov/ct2/show/NCT03762382

    Synthesis and characterization of a cyclodextrin-based artifical enzyme

    No full text
    • …
    corecore