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ABSTRACT 

GENE THERAPY USING TET-REPRESSOR SYSTEM TO MODULATE 
PROSTATE CANCER MICROENVIRONMENT 

Nazita Yousefieh 
Eastern Virginia Medical School 

and Old Dominion University, 2008 
Director: Dr. Richard P. Ciavarra 

Prostate cancer is the most commonly diagnosed malignancy in men in 

the United States and is projected to be the third most frequent cause of male 

cancer-related deaths in 2007 after lung and skin cancers. The initial treatment 

for prostate cancer at early stages is prostatectomy or radiation, which usually is 

curative. However, approximately 20% of patients are not cured by such 

treatments and their cancer recurs, sometimes with long latencies. In other 

patients prostate cancer is diagnosed only after the cancer has metastasized and 

there are no effective therapies at this stage. Therefore immunotherapy seems to 

be a promising approach to treat metastatic prostate cancer through enhancing 

tumor-specific T cell responses. In this regard, there is a growing interest in the 

generation of fully competent dendritic cells (DCs) that are known to be potent 

antigen presenting cells and capable of activating naive T cells. While DCs need 

to acquire a mature phenotype to induce T cell activation, it is known that the 

microenvironment of many tumors including prostate tumors is 

immunosuppressive and prevents DC maturation. We used the transgenic 

adenocarcinoma of mouse prostate (TRAMP) model to show that DCs infiltrating 



prostate tumors are phenotypically immature and using an in vitro assay we 

showed that TRAMPC2 cells but not granulocytes are the major inducers of this 

phenotype. We used a well-defined orthotopic prostate cancer model to study 

chemokine/cytokine vaccines. Expression of secondary lymphoid tissue 

chemokine (SLC), granulocyte macrophage-colony stimulating factor (GM-CSF) 

or CD40 ligand (CD40L) in the TRAMP tumor microenvironment (TME) was 

chosen to induce co-localization of T cells and DCs and their interaction, expand 

DCs and induce their maturation. In order to make a clinically relevant model in 

this study we took advantage of the tetracycline inducible expression system that 

enabled us to control the expression of the chemokines and cytokines during the 

course of study. We showed that expression of SLC in the TRAMP TME inhibited 

tumor growth, decreased metastasis and increased survival of tumor bearing 

mice. Although CD40L transfected TRAMPC2 cells did not grow in vivo and GM-

CSF transfected TRAMPC2 cells failed to grow tumors after in vitro passages, 

using in vitro assays we showed that these molecules reversed the inhibition of 

DC maturation induced by TRAMPC2 cells. 
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CHAPTER I 

INTRODUCTION AND BACKGROUND 

Metastasis is a fatal step in the progression of cancer, with death from 

metastases representing 90% of ail human cancer mortalities (1). Most cancer 

patients die from metastases rather than from their primary tumors. Metastasis to 

lymph nodes, bone and other tissues is a drastic consequence of late diagnosis 

of prostate cancer. Patients usually die from metastatic disease complications 

and available treatments for metastatic prostate cancer are not curative. 

Therefore new and more effective treatments are required for late-stage prostate 

cancer. Immunotherapy provides a promising systemic approach to treat 

metastatic prostate cancer. The rationale for using the host immune system to 

fight prostate cancer is based upon cases of spontaneous remissions of various 

cancers (2). However, the existence of cancer in a host with an intact immune 

systems demonstrate the inefficiency of this natural defense against tumors and 

the ability of cancer cells to evade immune surveillance and rejection. The major 

objective of immunotherapeutic approaches to prostate cancer therapy is to 

augment the anti-tumor immune responses against malignant tissues. Studies in 

a well-characterized preclinical animal model will provide a valuable opportunity 

The journal model for this dissertation is the Journal of Experimental Medicine. 



to explore the efficacy of specific cytokines to modify the tumor microenvironment 

(TME) and promote the induction of anti-tumor immunity. 

Available therapies for prostate cancer 

Prostate cancer is the second most common cancer after lung cancer in 

men in the United States. The American Cancer Society estimates that 218,890 

men will be diagnosed with prostate cancer and 27,050 will die from the disease 

during 2007. Mortality rates for prostate cancer have declined since the early 

1990s mostly due to improvements in detection and diagnosis through 

widespread use of prostate-specific antigen (PSA) testing. For localized prostate 

cancer, available treatments include surgery and radiotherapy. Unfortunately, up 

to 30%-40% of patients fail local therapy and later suffer from metastatic disease. 

The standard of care for patients failing primary therapy is hormone therapy but 

the majority of patients eventually become hormone refractory (3). Treatments in 

these cases are limited to aggressive chemotherapies, which can reduce serum 

prostate-specific antigen (PSA) levels in some patients. However, taxane- and 

platinum-compound-based chemotherapies produce a survival benefit of only a 

few months (4). Therefore, it is crucial to develop novel, well-tolerated treatment 

strategies. 

Cancer and Immunotherapy 

As a potential treatment for cancer, immunotherapy was initially 

experimented in the 19th century by William Cohen, who made the observation 
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that in rare cases of spontaneous tumor regression, the patients often suffered 

from episodes of infections (5). Coley had limited success in attempting to 

mobilize the body's immune system through the injection of bacterial extracts. 

However, the concept of treating cancer with the immune system seemed very 

appealing. This approach has the potential to generate a sustained potent 

immune response against cancer to prevent disease recurrence. One of the very 

first vaccination attempts against cancer was activation of the immune system 

using a bacterial infection. In a very large clinical trail, melanoma patients were 

treated with bacillus Calmette-Guerin (BCG). This treatment caused regression 

of tumors in some patients but no significant difference in overall survival was 

observed between BCG treated and control group (6). 

The next generation of cancer vaccines used cancer cell lysates or cultured 

cancer cell supernatants that induced a more specific immune response against 

tumor antigens (7-9). Melanoma patients injected with whole cell lysate of 

melanoma cell lines showed higher antibody titer against a known melanoma 

antigen (the ganglioside GM2) than control individuals (9). This study also 

suggested that melanoma recurrence was delayed in patients developing higher 

titers of GM2 antibody (9). 

It was only in the last 1-2 decades that the molecular nature of antigens 

recognized by T cells became known (10, 11) and many tumor antigens were 

identified (12). T cells recognize short peptides in association with major 

histocompatibility complex (MHC) molecules. The presentation of these peptides 

at the tumor cell surface follows the classical pathways of antigen processing: 
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peptides presented to cytotoxic T lymphocytes (CTLs) by MHC class I molecules 

are derived from intracellular proteins degraded by the proteasome, whereas, 

peptides presented to CD4+ T cells by MHC class II molecules are derived from 

proteins that have been transported to an endocytic compartment (13). 

In general, human tumors are poorly immunogenic and do not trigger an 

immune response. There are two types of tumor antigens: some tumors have 

unique antigens (not found on normal cells), called tumor specific antigens (TSA) 

(14). Tumor specific antigens are present in tumors induced by infectious agents 

(e.g. EBNA-1 antigen from Epstein Barr virus-induced Burkitt's lymphoma) (15) 

and mutated genes found only in tumor cells (e.g. mutated caspase-8 enzyme 

found in head and neck cancer, which is different from the normal caspase-8) 

(16). However, many tumors have antigens, called tumor associated antigens 

(TAA), found on normal cells but either modified or produced in greater quantities 

(17). A number of TSA recognized by melanoma reactive CTLs and T helper 

cells were identified and vaccines were designed using these peptides (18). 

Although using these peptides increased the frequency of specific T cells from 

0.1% to greater than 2% of circulating CD8+ T cells in many cases, low clinical 

response rates were observed (19). This can be due to the fact that the immune 

response elicited by the vaccination did not reach the quantitative capacity 

necessary for tumor regression (20). However, the results of another clinical trial 

demonstrated that standard high-dose interferon a-2b (a cytokine approved by 

the Food and Drug Administration (FDA) for treatment of cancer) therapy for 

high-risk melanoma was more effective than vaccination against the ganglioside 



GM2 (21). Therefore new strategies will be needed if vaccination is to be used as 

an effective therapeutic route to follow for cancer treatment. 

Clinical trials for cancer gene therapy 

Gene therapy for cancer treatment can be broadly defined as any 

manipulation of DNA that results in control of growth or death of cancer cells. 

DNA vaccines provide a stable and persistent source of the encoded antigen 

leading to a permanent stimulation of the immune system and generation of long-

lasting immunity (22). The construction of DNA vaccines involves cloning of the 

gene of interest into a plasmid under the control of a viral promoter and the most 

important key to the gene therapy process is the vector or the instrument by 

which DNA (transgene) can be transported into cells (22). Cancer vaccine trials 

using DNA plasmids injected by the subcutaneous or intramuscular route have 

been carried out in patients with metastatic melanoma and modest levels of T-

cell immunity have been seen in these patients (23, 24). Recently a plasmid that 

encoded epitopes from the potent melanoma antigen Melan-A/melanoma antigen 

recognized by T cells (MART)-1 and tyrosinase were used in a phase 1 clinical 

trial (25). In this study the plasmid was injected into the lymph nodes of the stage 

IV melanoma patients to improve the immunogenicity of plasmid vaccines by 

directly targeting an APC-rich environment but the detection of immune 

responses against this specific epitope occurred only in a subset of patients and 

regression of melanoma was not observed (25). Therefore, it seems that DNA 
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vaccines have limited immunogenicity even with intranodal route of injection. 

Suicide gene therapy involves the delivery of genes to tumor cells that 

encode enzymes (most of which are not encoded by mammalian cells) that are 

capable of converting prodrugs into toxic metabolites that can lead to cell cycle 

arrest and death. After the systemic administration of the prodrug, the neoplastic 

cells that express the gene are capable of transforming the drug into a toxic 

metabolite causing death not only of the cancer cells but also those cells in close 

proximity. This phenomenon, called the bystander effect, is the basis of the 

remarkable efficacy in tumor destruction of this system. One suicide gene 

therapy system is the herpes simplex virus thymidine kinase (HSV-tk) and the 

prodrug used in this system is ganciclovir (GVC). After extensive preclinical 

testing of this system in vitro and in vivo, a phase I clinical trial was conducted on 

prostate cancer patients by intraprostatic injection of a replication-deficient 

adenovirus (ADV) containing the HSV-tk gene, followed by intravenous 

administration of the prodrug GCV. Significant prolongation of the median serum 

prostate-specific antigen (PSA) doubling time from 2.9 to 6.2 months was 

detected. In five out of eight patients, a clear decrease of PSA values was 

observed. Fluorescence-activated cell sorting (FACS) analysis also showed no 

influence on phenotypic distribution in peripheral blood samples, except for an 

increasing trend of CD8+ after therapy (26). However, This study only confirmed 

the safety profile and the possibility of clinical response to HSV-tk gene therapy 

for hormone-refractory prostate cancer. Therefore, new approaches in the 

development of effective therapeutic cancer vaccines are required. Promising 
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new strategies have included the use of gene modified tumor vaccines and DCs 

based vaccines (27). 

Since the original concept of gene therapy was to create a patient specific 

vaccine Salgia et al., conducted a phase I clinical trial using single cell 

suspensions prepared from resected metastases of 35 patients with non-small-

cell lung cancer (NSCLC). Tumor cells were infected with a replication-defective 

adenoviral vector encoding granulocyte macrophage-colony stimulating factor 

(GM-CSF), irradiated and administered intradermally and subcutaneously. 

Vaccines were successfully manufactured for 34 (97%) of 35 patients. Toxicities 

were restricted to grade 1 to 2 local skin reactions. Nine patients were withdrawn 

early because of rapid disease progression. Vaccination elicited DCs, 

macrophage, granulocyte, and lymphocyte infiltrates in 18 of 25 assessable 

patients. Metastatic lesions resected after vaccination showed T lymphocyte and 

plasma cell infiltrates in three of six patients. This study indicated that vaccination 

with irradiated autologous NSCLC cells engineered to secrete GM-CSF 

enhanced anti-tumor immunity in some patients with metastatic NSCLC (28). 

However, this process proved to be expensive and time consuming, the end 

product was of variable quality, and the concept was not a realistic option for 

large-scale production. 

Dendritic cell based immunotherapy is another promising approach to augment 

tumor antigen-specific T cell responses in cancer patients. Often malignant 

growth is a slow and silent process that fails to provide necessary signals for the 

activation of the immune system. The goal of DC vaccination is to provide these 
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signals with ex vivo and appropriately activated and loaded DCs with tumor 

antigens. In a study with 33 metastatic melanoma patients vaccination with 

autologous tumour lysate-loaded DC resulted in a slightly higher response rate 

compared to peptide-pulsed DC (3 versus no partial remissions, respectively) 

(Hersey P, Menzies, Cancer Immunol Immunother 2004;53:125-34). Although 

results from different phase 1 trials indicate that DC-based immunotherapy is 

feasible, safe, and well tolerated, clinical results are often inconclusive. The 

subjects enrolled in these trials had an advanced-stage disease and the lack of 

product standardization, results in phenotypic and functional differences in 

administered therapeutic DC products and therefore inconclusive clinical results. 

Chemokines and Cytokines in the treatment of cancer 

In spite of recent progress in understanding cancer biology and 

achievements in novel treatment options, the success rate for cancer therapy 

remains dismal. Since its initial discovery, cytokine-based immunotherapy has 

been extensively investigated for cancer treatment as cytokines can be easily 

purified and injected and therefore used as cancer treatment agents (29, 30). 

Growth, differentiation and function of immune cells are regulated by cytokines 

and chemokines that can be secreted or remain membrane bound. Cytokines 

regulate both the innate immune system [natural killer (NK) cells, macrophages 

and neutrophils] and the adaptive immune system (T cells and B cells). 

Cytokines have the capacity to alter the interaction between the body's immune 
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system and cancer cells to boost, direct or restore the body's ability to fight 

disease. Some cytokines have direct effect on the tumor cells like interleukin-6 

that inhibits the growth of the majority of melanoma cell lines from early stages of 

tumors (31). Some other cytokines fight tumors through indirect mechanisms like 

granulocyte macrophages-colony stimulating factor (GM-CSF) that induces the 

differentiation and proliferation of myeloid precursor cells and eventually 

development of dendritic cells (DCs) (32). In some cases, cancer cells can take 

advantage of cytokines secreted by the host cells that promote growth, inhibit 

apoptosis and facilitate invasion and metastasis. For example, interleukin-1a 

that is secreted by macrophages stimulates the growth of breast cancer cells in 

nude mice (33). lnterleukin-8 (IL-8) secreted from monocytes and macrophages 

has been shown to act as a growth factor in head and neck squamous cell 

carcinomas (34). Furthermore, IL-8 has also been reported to have 

proinflammatory and angiogenic activities that enhance tumor growth and 

metastatic potential of human gastric carcinoma cells and human non-small cell 

lung cancer (35, 36). Loberg etal. showed that monocyte chemoattractant 

protein 1 (CCL2), a chemokine expressed by human bone marrow endothelial 

cells, is a potent chemoattractant of prostate cancer epithelial cells (PC-3 and 

VCaP) and can a play role in bone metastasis in prostate cancer patients (37). 

PC-3 and DU145 and LnCaP prostate cancer cell lines express the receptor 

(CXCR4) for stromal cell-derived factor-1 (SDF1) (a chemokine expressed by 

osteoblasts and endothelial cells in the bone marrow) and it has been shown that 

SDF-1 supported the invasion of prostate carcinoma cell lines into reconstituted 
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basement membranes (38). This suggests the possibility that prostate cancers 

use the SDF-1/CXCR4 pathway during their metastasis to bone. 

Cytokine therapy [e.g. IL-3, GM-CSF, interferon (IFN)-a] has been approved 

for treatment of specific cancers by the FDA. Disadvantages associated with 

cytokine therapy are frequent injections and most importantly the high rates of 

side effects leading to discontinued use of the treatment (39,40). lnterleukin-3 

and GM-CSF have growth stimulatory effects on normal hematopoietic progenitor 

cells and clinical trials using these cytokines after bone marrow transplantation 

for various malignancies including lymphomas are frequently conducted (40). In 

one such a clinical trial 37 patients (20 patients with non-Hodgkin's lymphoma 

and 17 patients with Hodgkin's disease) were treated with IL-3 and GM-CSF 

before bone marrow transplantation. Side effects included nausea, fever, 

diarrhea, vomiting, rash, edema, chills, abdominal pain and tachycardia and 

three patients had to stop the treatment because of these side effects. The 

median time for platelet recovery was 15 days after transplantation that was 

about 30 days with either of the cytokines alone (40). Overall, the systemic 

administration of cytokines is associated with significant side effects that bear a 

certain resemblance to a state of overwhelming infection and has only achieved 

modest therapeutic benefits that perhaps reflect the failure of this approach to 

treat cancer (41). 

Role of T cells in the treatment of cancer 

All current approaches to immunotherapy have failed to match expectations 
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and recent studies have been directed to activation of antigen-specific T cells 

(42). T cells that have never encountered antigens are indicated as naive T 

cells. Adaptive immunity relies on each naive T cell bearing a unique prototype 

antigen receptor recognizing antigens presented to them by other cells. Cells 

involved in innate immunity, such as DCs, directly recognize a limited set of 

antigens and are responsible for the initial trapping of the antigen in the periphery 

and its presentation to T cells in the proximal lymph nodes (43). Upon first 

encounter with its specific antigen, a naive T cell is arrested in the lymph node 

where it undergoes intense proliferation and acquires further differentiation 

markers and distinct functional capabilities. 

Activated T cells fall into two major classes that have different effector 

functions and they are distinguished by the expression of the cell surface 

proteins CD4 and CD8. CD4+ T cells (T helper cells) can bind to MHC class II 

antigens and CD8+ T cells (cytotoxic T cells or CTLs) can bind to MHC class I 

antigens. T helper cells fall into two general classes: Th1 cells produce several 

characteristic cytokines, most notably IL-2 and IFN-y, whereas Th2 cells produce 

a set of cytokines, most notably IL-4, IL-5, and IL-13. In turn, IL-2 and IFN-y 

promote the development of strong cell-mediated immunity, whereas the type 2 

cytokines promote allergic responses effective in eliminating parasites (44). 

It has been suggested that the activation of naive T cells is determined by 

the combination of two signals provided by antigen presenting cells (APCs) (45). 

The first signal functions through the antigen-specific T cell receptor complex. 

Foreign antigens (tumor antigens) are presented to T cells on the surface of APC 
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in complex with MHC molecules and are recognized by the T cell receptor (46). 

A small number of circulating T cells have the receptor that can recognize the 

specific MHC/antigen complex. The second signal is provided by interaction with 

the co-stimulatory molecules (B7.1 and B7.2) on APC and their receptors on T 

cells (CD28) (47). These interactions activate T cells to undergo a number of 

mitotic divisions that is referred to clonal expansion and enables a significant 

increase in the number of T cells that recognize the antigen. 

Cytotoxic T lymphocytes are the key components of cell-mediated immunity 

and activated and expanded CTLs target cells that express foreign antigens. 

However, a successful immune response requires the presentation of MHC 

class-l immunogenic peptides by both APCs and the tumor itself. Dendritic cells 

activate T cells by presenting them with peptide antigen in a complex with MHC 

molecules and then activated T cells identify target cells that express the same 

antigen/MHC complex. It has been shown that many human tumors have limited 

expression of MHC antigens and co-stimulatory molecules (48, 49). Restifo et al. 

showed that three human small cell lung carcinomas failed to transport MHC 

class-l antigens from the endoplasmic reticulum to the cell surface (48). 

Fluorescence activated cell-sorting (FACS) analysis also showed low expression 

of MHC class-l antigens in D7RM-1 prostate cancer cells (49). However, 

Goldszmid et al. showed that DCs co-cultured with apoptotic tumor cells induced 

protective immunity against B16 melanoma cells that express low levels of MHC 

class-l antigens. Eighty percent of the vaccinated mice remained tumor-free 12 

weeks following challenge with B16 cells and the immunity was mediated by both 
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CD4+ and CD8+ T cells (50). 

Recognition of the same MHC/antigen complex by activated CTLs on 

tumor cells sets off a cascade of events that ultimately leads to the destruction of 

tumor cells by programmed death cell or apoptosis (51). The destruction of 

target cells by CTLs occurs by two major pathways. The first pathway involves 

release of granules containing perforins that damage the cell membrane. 

Various granzymes and possibly other granules are secreted along with perforins 

by CTLs. These granzymes are proteases that enter the target cell through the 

pores generated by perforins and induce apoptosis by activation of caspases 

(52). The second pathway requires the interaction of Fas ligand (FasL) on CTLs 

and Fas molecule on the target cell that induces activation of caspases and 

induction of apoptosis (51). CD8+ CTLs have been described to play crucial 

roles in host defense against malignancies in both mouse and human studies. 

For example, the adoptive transfer of CMS4 sarcoma specific CTLs resulted in 

nearly complete regression of 3-day established experimental lung metastases in 

a mouse model. Moreover, under conditions of extensive metastatic disease (day 

10 tumor-bearing mice), the adoptive transfer of CTLs resulted in reduction of 

average detectable lung nodules from >150 at the time of transfer to 30-35 

nodules 2 or 3 weeks post-CTLs transfer (53). They also showed that FasL 

pathway has a significant role in tumor regression of experimental CMS4 lung 

metastases by adoptive transfer of antigen-specific CTLs (53). 

Tumor cells can avoid the adaptive immune response and being killed by 

antigen-specific CD8+ T cells through impaired antigen presentation (54). 
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However, natural killer (NK) cells of the innate immune system kill MHC class I-

deficient cells that can be missed by CTLs (55). The activity of NK cells is 

controlled by a balance of positive and negative signals. Engagement of 

inhibitory receptors by MHC class I molecules blocks activation signals (56). 

However, in the absence of inhibitory signals NK cell cytotoxicity must be 

activated by a set of triggering receptors (57). Upon activation NK cells enhance 

their ability to adhere to and recognize target cells, leading to a broader killing 

activity against tumor cells that essentially takes place as (58): 1) 

perforin/granzyme-dependent necrosis of target cells, involving cell adhesion and 

granule release (59); and 2) apoptosis of target cells, which involves cell 

adhesion and is mediated by surface TNF ligand family members like FasL or 

TNF-a that interact with specific receptors on the target cell surface (60). 

Although CTLs may be important for the elimination of established 

disseminated tumors, studies using purified functional subsets of immune T cells 

have suggested that CD4+ T helper cells are necessary and sufficient for tumor 

eradication in some cases (61). T cell deficient ATXBM B6 mice (adult, 

thymectomized, irradiated, T cells depleted and bone-marrow reconstituted mice) 

inoculated with FBL-3 tumor cells (a Friend virus-induced erythroleukemia of B6 

origin) were adoptively transferred with spleen cells depleted of B6/CD8+ T cells 

(sensitized in vivo by injection of irradiated FBL-3 tumor cells) were tumor free for 

about 80-100 days after tumor inoculation when they were sacrificed. However, 

mice treated with spleen cells depleted of T helper cells died after about 40-45 

days (61). In another study, mice were vaccinated with irradiated B16 melanoma 
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cells that were transduced to secrete GM-CSF (B16-GM-CSF). Seven to 

fourteen days after vaccination, mice were challenged with live non-trancduced 

tumor cells. All vaccinated mice were tumor free for 100 days, whereas control 

mice died 35-40 days after tumor challenge (62). Both CD4+ and CD8+ T cells 

were required for effective vaccination, since depletion of either T-cell subset by 

administration of specific antibodies before vaccination abrogated the 

development of systemic immunity, whereas depletion of NK cells had little or no 

effect (62). Furthermore, Hung et al. showed that CD4 knockout mice vaccinated 

with irradiated B16-GM-CSF cells failed to prime a systemic immune response 

capable of rejecting live tumor cells injected 2 weeks after vaccination. However, 

similarly immunized CD8 knockout mice mounted a successful tumor rejection 

(63). Using INF-y and IL-4 knockout mice they also showed that the protective 

immunity against B16 melanoma challenge was mediated mostly by INF-y and to 

lesser extent by IL-4 secreted by activated Th1 and Th2, respectively (63). 

Therefore the optimal tumor antigen-specific vaccine should incorporate a panel 

of dominant tumor antigens recognized by both CD4+ and CD8+ T cells. 

Biology and different subsets of dendritic cells and their role in 

T cell activation 

Activation of T cells depends on tumor-associated antigen presentation to 

T cells by antigen presenting cells (APCs) like DCs that leads to stimulation of an 

immune response. Probst et al. used CD11c-DTR/GFP transgenic mice that 

allowed conditional depletion of DCs with lymphocytic choriomeningitis virus 
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(LCMV), which infects all types of APCs and elicits a vigorous CTLs response, to 

show that priming of LCMV-specific CTLs was crucially dependent on DCs (64). 

Norbury et al. provided direct evidence that virus infected DCs primed naive 

CD8+ T cells in vivo (65). They showed that following local infection, vaccinia 

virus infected macrophages and DCs were found in draining lymph nodes. But, 

only DCs presented antigen to naive CD8+ T cells as determined by direct 

visualization of sectioned lymph nodes using confocal microscopy. The 

presentation occurred about 6 hours after inoculation (65). In vitro and in vivo 

studies have shown that bone marrow-derived DCs are the most effective APCs 

at activating naive CD4+ T cells. This efficiency is thought to be related to the fact 

that DCs express high levels of class II MHC and co-stimulatory molecules (66). 

Confocal microscopy was used to show the physical interaction of DCs and naive 

CD4+ T cells in vivo (67). In this study fluorescent dye-labeled DCs and naive T 

cell receptor transgenic CD4+ T cells specific for an ovalbumin peptide/IAd 

complex were shown to co-localize in the lymph nodes after adoptive transfer 

into syngeneic recipients. They also demonstrated that DCs caused proliferation 

and differentiation of CD4+ T cells and production of IL-2 by these cells (67). 

However, other evidence has suggested that macrophages and in some cases B 

cells can act as APCs in vivo. B cells are the most potent APCs in inducing the 

proliferation of differentiated T helper type 2 (Th2) cells and splenic macrophages 

are APCs for differentiated T helper type 1 cells (Th1) (68). It has also been 

suggested that peritoneal macrophages are favored APCs for both Th1 and Th2 

cells (69). However, B cells can function as APCs for Th1 cells, but not for Th2 
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cells, in an IL-1-dependent pathway (69). 

The most important property of DCs is unquestionably their ability to 

activate naive T cells in vivo. The antigen sampling and migratory capacities of 

DCs effectively allows naive T cells to come into contact with peripheral antigens 

that they would otherwise not have encountered (70). The process that is used 

by DCs to sample the environment for the benefit of lymphocytes is called DC 

maturation. DCs have two functional states, immature and mature, with only a 

mature DC having the ability to prime an immune response (70). The immature 

state of DCs is characterized by a high phagocytic capacity and low expression 

of molecules such as CD40, CD83, CD80 (B7.1) and CD86 (B7.2) (71). CD40 

engagement induces maintenance of high levels of MHC class II antigens and 

up-regulation of CD80 and CD86 molecules that provide the required signals for 

T cell activation (72). Both CD40 and its ligand (CD40L) belong to the tumor 

necrosis factor receptor (TNF-R) and TNF family (73). CD40 has no kinase 

domain itself, but CD40L binding to this molecule activates several second 

messenger systems. These include several protein tyrosine kinases (such as: 

lyn, syk and Jak3), phosphoinositide-3 kinase (PI-3 kinase), serine-threonine 

kinases and phospholipase Cy2 (73). Inhibition of p38 stress-activated protein 

kinase (a PI-3 kinase) significantly reduced the LPS-induced up-regulation of 

CD80, CD83, and CD86 but did not significantly affect the endocytotic capacity of 

human monocyte-derived DCs that is a characteristic of immature DCs (74). In 

addition, JAK3 inhibition with a JAK3 specific inhibitor prevented the expression 

of co-stimulatory molecules and production of IL-12, arresting the DCs at an 
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immature state (75). CD40 has also been shown to interact with members of 

TNF-Receptor associated factors like TRAF3 that is expressed in almost all cell 

types. These events lead to activation of transcription factor NF/cB that in 

monocytes eventually activates the expression of genes involved in DC 

maturation (76) and cytokine (such as IL-1, IL-6, IL-8, IL-10, IL-12, TNF-a, MIP-

1a) secretion by these cells (73, 77). 

Depending on origin, function and localization, murine DCs are divided into 

at least two populations: myeloid and lymphoid DCs, which have been 

distinguished by the expression of CD8 (78). CD8+ lymphoid DCs were first 

identified in the thymus of mice but DCs with the same phenotype have been 

identified in spleen, lymph nodes and Payer's patch (79). Myeloid and lymphoid 

subsets of murine DCs that have been directly isolated from spleen are different 

in their ability to activate T cells. The myeloid related CD8" DCs induce more 

intense and prolonged proliferation of naive T cells than do lymphoid related 

CD8+ DCs despite similar expression of MHC and co-stimulatory molecules (80, 

81). However, only the CD8+ DC subset, demonstrates cross-priming ability in 

vivo (82). In this cross-presentation pathway, DCs take up cell-associated 

antigens and present them in the context of their own major histocompatibility 

complex (MHC) class I molecules to CD8+ T cells. This process has been shown 

to be important in initiating MHC class I restricted responses to peripheral self, 

viral, bacterial and tumor antigens (83-86). Whereas myeloid related DCs derived 

from monocytes produce a large amount of IL-12 and preferentially induce Th1 

development, lymphoid DCs produce lower amounts of IL-12 and preferentially 
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induce Th2 development (87). A third minor population of DCs was originally 

identified in human blood. CD11c" DCs that are also called plasmacytoid DCs 

(pDCs) are morphologically and functionally immature (88). These DCs are found 

in the T cell zones of lymphoid organs and in the thymus and blood and were 

also described as plasmacytoid T cells or plasmacytoid monocytes (89, 90). The 

mouse equivalent of human plasmacytoid DCs has low expression of CD11c, 

CD11b and MHCII and high expression of B220 and Ly6C (detected with Gr-1 

antibody). These DCs do not have high expression of CD 123 and some of them 

express CD8 but activated mouse pDCs have high expression of CD8 and like 

their human counterparts, they represent in vivo a specialized type I interferon 

producing cell (91). The role of plasmacytoid DCs that are the major producer of 

type I interferons upon viral infection, in tumor biology is unknown (92). Human 

DCs do not express CD8 so a human equivalent of murine CD8+ DCs has not 

been found. But CD8" DCs found in humans function similarly to their murine 

counterparts (93). 

Several factors can induce DC maturation including pathogen-associated 

molecular patterns-containing components of bacteria, viruses and parasites, 

such as lipopolysaccharides, peptidoglycans and CpG motifs that induce toll-like 

receptor (TLR) signaling pathways (94). The mammalian TLR family consists of 

10 members. Expression of TLRs by DCs is different among their subsets. 

Myeloid DCs express TLR1, 2, 4, 5, and 8, and plasmacytoid DCs exclusively 

express TLR7 and TLR9, although there are some reports that TLR7 is also 

expressed in myeloid DCs (95). Toll like receptors have a conserved intracellular 
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domain called Toll-IL-1 -resistance (TIR) domain, which mediates recruitment of 

the TIR domain-containing adaptor molecule, myeloid differentiation factor 88 

(MyD88), a critical adaptor molecule used by all TLRs (96). The recruitment of 

MyD88 to TIR domains of activated TLRs allows for the interaction and activation 

of the IL-1R-associated kinase (IRAK) family members and the subsequent 

activation of TNF receptor-associated factor (TRAF)-6 (97). These events, at a 

minimum, result in activation of transcription factor NF-KB (98). While most of the 

TLRs seem to be absolutely dependent on the expression of MyD88 for all of 

their functions, TLR3 and TLR4 are unique in their ability to activate both MyD88-

dependentand MyD88-independent responses (99). A feature of MyD88-

independent signaling is the induction of the type 1 interferon (IFN-P) (100). 

Whereas all TLRs activate NF-/d3 and ATF2-c-Jun transcription factors, not all 

TLRs induce IFN-p because not all TLRs induce interferon regulatory factor (IRF-

3) activation. Thus, TLR3 and TLR4 appear to activate gene expression 

pathways and trigger antiviral responses by a mechanism involving the 

coordinate activation of NF-/d3 and IRF-3 (100). 

The CD11c and MHC class-ll (IA) molecules are expressed at high levels 

on all mature DCs in mice and co-expression of both markers is used to define 

mature DCs phenotypically (101). Mature DCs migrate to local lymph nodes and 

settle near the T lymphocyte rich regions. This selective migration allows the DCs 

to interact with vast numbers of T lymphocytes, thus enhancing T lymphocyte 

priming and activation (102). Hugues et al. showed that maturation of DCs is 

crucial for T cell activation and resulted in prolonged contacts between DCs and 
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T lymphocytes (103). Stable and prolonged contact between DCs and T cells 

primes T cells in vivo, whereas brief contacts may contribute to the induction of T 

cell tolerance (103). Maturation of DCs is important for the initiation of a specific 

anti-tumor T cell response. 

Dendritic ceils in cancer 

Majority of both circulating and tumor infiltrating DCs from cancer patients 

appear to be phenotypically and/or functionally defective (104-108). Tumor 

infiltrating DCs from breast carcinoma have been found to be immature in all of 

32 samples that were tested by immunohistochemistry and immunofluorescence, 

however, DCs from peri-tumoral area were mature in 20 of the samples (108). 

Tumor infiltrating DCs (TIDCs) in renal cell carcinoma were described as mature 

DCs since they express high levels of MHC antigens and the B7.2 co-stimulatory 

molecule (104). But the failure of these patients to mount an anti-tumor immune 

response despite the presence of professional APCs in the tumor tissue 

suggests that TIDCs are suppressed in situ. The suppression of DCs may be due 

to the expression of IL-10 in the human renal cell-carcinoma TME as IL-10 is a 

potent suppressor of DCs (109). 

As mentioned earlier DCs are the most potent APCs capable of activation 

of T cells. Therefore, expansion of DCs and recruitment of DCs and T cells to the 

tumor site may be essential for generating sufficient and specific anti-tumor 

immune response. Owing to their capacity to activate and regulate T cells, DCs 

have been used for vaccination trails in cancer therapy (110). Mayordomo et al. 



directly assessed the ability of vaccines consisting of DC carrying tumor peptides 

to elicit protective anti-tumor immune responses in 4 different murine models 

(111). In this study mice were injected with bone marrow-derived DCs pulsed 

with synthetic tumor-associated peptides that were known to be expressed by C3 

sarcoma, M05 melanoma, Lewis lung carcinoma and Meth A sarcoma tumor 

cells. Animals vaccinated in this manner were resistant to challenge with tumor 

cells expressing the relevant tumor antigen in each of four different tumor models 

tested (111). Furthermore, in a clinical study that the readout was the expansion 

of CD8+ T cells, 12 patients with metastatic melanoma were vaccinated with 

tumor antigen-pulsed DCs that led to expansion of melanoma-specific cytolytic 

CD8+ T cell precursors in several patients. In this study the lack of melanoma-

specific T cells was observed in three patients, all of which experienced early 

disease progression with appearance of new lesions. The results were assessed 

by measuring the cytotoxic function of CTLs after vaccination against multiple 

targets expressing melanoma antigens in a standard 4hr 51Cr release assay 

(112). However, a major limitation for the clinical use of DCs is the availability of 

sufficient cell numbers. In humans, DCs represent 0.5% of peripheral blood 

mononuclear cells (113). Therefore, various groups have explored culture 

conditions to improve expansion of DCs ex vivo. Culturing of bone marrow-

derived cells in the presence of the ligand for the receptor fms-like tyrosine 

kinase 3 (flt3-L) has been shown to result in a sufficient expansion of DCs (114). 

Flt3-L is a hemopoeitic growth factor that promotes the differentiation and 

expansion of hematopoeitic stem cells and progenitors. It has also been shown 



that in vivo administration of flt3-L dramatically increases the numbers of 

hematopoietic progenitors in the bone marrow, peripheral blood and spleen (115, 

116). Treatment of mice with human flt3-L has been shown to lead to the 

expansion of DCs subsets in multiple tissues and peripheral blood (117). 

Alterations in dendritic cell development and function are associated with tumor 

escape from immune-mediated surveillance (118). Therefore, using flt3-L to 

expand DCs to initiate and maintain antigen-specific immune responses seemed 

a rational choice for cancer immunotherapy. The administration of flt3-L to mice 

with established tumors resulted in some regression and inhibition of a variety of 

tumors including melanoma (119), fibrosarcoma (120), colon cancer (118, 121), 

lymphoma (119) and prostate cancer (122). Daily administration of flt3-L with 

established colon carcinoma tumors delayed tumor growth as long as the ligand 

was administered. However, tumor growth resumed as soon as flt3-L injections 

were stopped, and they grew with a similar rate that was observed in untreated 

animals (118). 

It has been shown by us and others that flt3-L mobilized DCs in vivo 

display primarily an immature phenotype and therefore they are not capable of 

activating T cells (123, 124). Mosca et al. demonstrated that multiple signals are 

required to induce DCs maturation ex-vivo (125). They demonstrated that flt3L-

mobilized DCs purified from cancer patients require a sequence of specific 

signals for maturation, which included initial treatment with granulocyte 

macrophage-colony stimulating factor followed by a combination of maturation 

signals such as CD40L and IFN-y. Flt3L-mobilized DCs matured in this manner 



showed higher expression of co-stimulatory molecules than DCs matured with 

either cytokine alone (125). Davis et al. showed that blood dendritic cells 

generated with flt3-L and matured with soluble CD40 ligand (CD40L) primed 

CD8+ T cells efficiently in melanoma patients (126). Therefore, although flt3-L 

expands the number of DCs these DCs are functionally immature and need 

additional signals to undergo maturation that makes them capable of antigen 

presention. 

Accordingly, maturation of flt3-L expanded DCs may be induced by 

expression of CD40L in the TME. CD40L is expressed by activated T cells (73) 

and its receptor, CD40, is an integral membrane protein that is expressed 

throughout B-cell development. CD40 is also expressed on mature DCs, 

hematopoietic progenitor cells, epithelial cells and carcinomas (77). Dendritic cell 

CD40/CD40L interactions seem to be a critical step in the maturation of these 

cells into fully competent antigen presenting cells. Interaction of CD40 with 

CD40L has been demonstrated in vivo as being responsible for T cell-dependent 

B cell activation and class switching, facilitating germinal center reactions (77), 

activation of macrophages and DCs (73, 127), and establishment of memory 

CTLs (128). CD40 ligation of DC also has the capacity to induce high levels of 

the cytokine IL-12, which polarizes CD4+ T cells toward a T helper 1 (Th1) type, 

enhances proliferation of CD8+ T cells (129). Since CD40/CD40L interaction 

induces DC maturation that consequently may cause T cell activation, Cella et al. 

studied induction of DC maturation with CD40L transfected tumor cells in vitro. 

Indeed, CD40L caused up-regulation of co-stimulatory molecules B7.1 and B7.2 



and adhesion molecules (CD54 and CD58) on DCs and enhanced their efficiency 

to present antigens to T cells (130). They also performed allogeneic mixed 

lymphocyte reactions to show that T cell stimulatory capacity of DCs was 

dramatically enhanced by CD40L (130). Significant slower tumor growth rate and 

less metastasis were observed following administration of CD40L plasmid into 

the mice with orthotopic pancreatic adenocarcinoma. Tumors of treated mice 

were infiltrated with T cells and DCs. Dendritic cells were mature and of myeloid 

origin. Tumor infiltrating lymphocytes were tumor-specific as shown by IFN-y 

ELISpot assays (131). Since maturation of DCs plays an important role in the 

activation of T cells, expression of CD40L in the TRAMP TME infiltrated with 

immature DCs after flt3-L therapy can play a critical role in the induction of anti

tumor immune response. 

Another cytokine that is a good candidate for expression in TME to provide 

required signals for CTLs activation is granulocyte-macrophage colony-

stimulating factor (GM-CSF), because of its capability to cause DC expansion 

and maturation (132). GM-CSF is a 23-kDa glycoprotein with remarkably diverse 

effects on immune and non-immune cells (133). GM-CSF induces differentiation 

of granulocyte, macrophage, and eosinophil precursor cells. When suspensions 

of mouse bone marrow are cultured in the presence of GM-CSF, three types of 

myeloid cells expand in numbers: non-adherent neutrophils, firmly adherent 

macrophages and DCs that arise from cellular aggregates that are attached to 

the marrow stroma (132). Proliferation of monocyte, macrophages, T 

lymphocytes, keratinocytes, and endothelial cells is also stimulated by GM-CSF 



(133). The receptors for human GM-CSF are expressed on the surfaces of 

myeloid cells and also non-hematopoietic cells like endothelial cells (134). 

Furthermore, GM-CSF can induce functional maturation of DCs. Mach et al. 

studied the expression of co-stimulatory molecules on flt3-L and GM-CSF 

expanded DCs. The level of B7.1 expression was dramatically increased on DCs 

stimulated by GM-CSF as compared with flt3-L treatment. GM-CSF also 

stimulated more uniform, high level expression of B7.2, CD40, and MHC class II 

molecules than flt3-L, although these differences were less striking (135). 

In view of the fact that GM-CSF can induce DC expansion and maturation, 

Dranoff et al. studied the ability of this cytokine to stimulate systemic anti-tumor 

immunity in vivo (62). Vaccination with irradiated melanoma B16 tumor cells 

engineered to secrete GM-CSF stimulated the recruitment of a large numbers of 

antigen presenting cells to the tumor site that suggest the involvement of this 

cytokine in the augmentation of tumor-antigen presentation. The systemic 

immunity was long lasting in that the majority of vaccinated mice were 

subsequently challenged with non-transduced cells and remained tumor free 

several months after vaccination (62). Soiffer et al. conducted a phase I clinical 

trial investigating the biologic activity of vaccination with irradiated GM-CSF 

secreting melanoma cells in patients with metastatic melanoma. Immunization 

sites were intensely infiltrated with T lymphocytes, DCs, macrophages, and 

eosinophils in all 21 patients and metastatic lesions removed after vaccination 

were densely infiltrated with T lymphocytes and plasma cells and showed 

extensive tumor destruction (136). However, these anti-tumor immune responses 



failed to induce clinical regression; rather, the necrotic tumor masses were 

largely replaced by inflammatory cells, edema, and extensive fibrosis (136). 

However, GM-CSF has the potential to cause expansion and maturation of DCs 

in the transgenic adenocarcinoma of mouse prostate (TRAMP) model and induce 

long-term immunity through activation of T cells. 

Co-localization and therefore interaction of DCs and nai've T cells is 

essential for activation of T cells. We have shown that TRAMP tumors are 

infiltrated with a very small population of T cells (137). Moreover, Bai et al. 

showed that the initial activation of tumor specific T cells takes place in the 

lymphoid organs and then activated T cells infiltrate the tumor and undergo 

clonal expansion within this site (138). Therefore secondary lymphoid tissue 

chemokine (SLC) that strongly attracts both mature DCs and naive T cells 

through binding to its receptor chemokine C receptor 7 on these cells (139) may 

facilitate their interaction and promote T cell activation and tumor immunity. This 

chemokine is expressed by high endothelial venules and in the T cell zone of 

spleen and lymph nodes. Gunn et al. showed that in mice lacking SLC 

expression, homing of T cells and DCs to secondary lymphoid organs was 

significantly decreased (140). Dendritic cells express CCR7 upon induction of 

maturation (141) and CCR7 is essential for migration of naive T cells into lymph 

nodes and splenic white pulp cords (141). After T cell activation and 

differentiation, expression of CD62L and CCR7 is lost on T cells (142). Since co-

localization and interaction of DCs and T cells are important factors for induction 

of an immune response, the ability of SLC to chemoattract both T cells and DCs 



justified testing this chemokinein cancer immunotherapy (143,144). It has been 

shown that SLC expression by C26 colon tumor cells caused strong recruitment 

of DCs that expressed an immature phenotype and were refractory to activation 

with a combination of stimuli like LPS, IFN-y, andanti-CD40 agonist antibody 

(144). However, DCs were activated by intratumoral injection of a combination of 

CpG immunostimulatory sequence and IL-10 receptor antibody (144). 

Intratumoral injection of SLC caused a significant reduction in tumor volumes 

with complete tumor eradication in 40% of the mice in both line 1 alveolar 

carcinoma and Lewis lung carcinoma that are known to be weakly immunogenic 

lung cancer models (143). In these cases, SLC mediated anti-tumor responses 

were CD4+ and CD8+ T cell dependent (143). Splenocytes and lymph node-

derived cells from SLC-treated tumor-bearing mice that were co-cultured with 

irradiated tumor cells secreted significantly increased levels of IFN-y (13- to 28-

fold), GM-CSF (3-fold, spleen only) and IL-12 (1.3- to 4-fold) compared to carrier 

treated animals. It is known that GM-CSF and INF-y are secreted by activated T 

cells and IL-12 is secreted mainly by B cells and to a lesser extent by activated T 

cells. Moreover, intratumoral SLC administration led to enhanced lymph node-

derived CTL activity against the parental tumor cells (143). 

The expression of SLC by transfected tumor cells may be helpful for the 

induction of the immune response by homing DCs and T cells to the TME where 

there should be sufficient tumor antigen for immune recognition. We have 

previously shown that DCs infiltrating TRAMP tumors are phenotypically 

immature (124). Furthermore, we demonstrated that flt3-L therapy induced a 



pronounced mixed (macrophage, DC, granulocyte) myeloid infiltrate into TRAMP 

tumors. It has also been shown that myeloid cells infiltrating human and mouse 

tumors actually helped tumor development by providing molecules and factors 

essential for tumor growth. For example, IL-1(3 that is produced mainly by 

activated monocytes and macrophages promotes tumor growth of Lewis Lung 

carcinoma by induction of angiogenic factors by stromal cells (145). Myeloid cells 

also exerted a profound inhibitory activity on both tumor-specific and nonspecific 

T cells by altering the balanced production of cytokines like IL-2 and IL-12 in the 

tumor microenvironment (TME) (146). We hypothesize that SLC expression in 

the TRAMP TME will attract a significant numbers of mature DCs and naive anti-

TRAMP T cells which will facilitate T cell/DC interaction to induce T cell 

activation. We further speculate that this interaction will overcome the inhibitory 

activity of infiltrating myeloid cells. 

In summary, flt3-L therapy caused tumor regression in the mouse model of 

prostate cancer but this therapy was not curative. This could be due to the 

immature phenotype of DCs in the TRAMP TME and consequently their inability 

to activate T cells infiltrating these tumors. We propose that expression of SLC, 

CD40L or GM-CSF will provide required additional signals for maturation of DCs 

leading to T cell activation and anti-tumor immunity. 

I 
Tetracycline inducible mammalian expression system 

The ability to control the spatial and temporal expression of a transgene, 

either in cell culture or in transgenic animals, is a valuable tool in gene function 
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studies. Constitutive over-expression of a transgene over long periods in culture 

or in animals may have several undesired effects that are not functional 

characteristics of that gene product. Therefore, regulated expression systems are 

invaluable for studying gene function. These systems offer advantages of 

dosage-dependent and temporally defined gene expression, and limit possible 

clonal variation when toxic or pleiotropic genes are over-expressed. Many 

methods have been described and used for regulated expression of transgene in 

mammalian cells. Some of these methods involve the use of endogenous 

mammalian proteins. These include the use of heat shock proteins, the 

glucocorticoid receptor, the estrogen receptor, the progesterone receptor and the 

aryl hydrocarbon receptor (147-150). In all these systems the expression of the 

transgene can be modulated but the problems associated with these systems are 

the generalized physiologic or toxic effects of the inducers and/or high basal 

transcriptional activity from the inducible promoter that limits their utility. The 

expression of Cyp1a-1 gene, whose product, aryl hydrocarbon hydroxylase, is 

induced by polycyclic aromatic hydrocarbons. Cyp1a-1 enhancer elements and 

promoter region have been used to inducibly express the chloramphenicol 

acetyltransferase (CAT) reporter gene in transgenic mice. Treatment of 

transgenic mice with the inducer 3-methylcholanthrene (3-MC) caused a 

profound increase in transgene expression (>1,000-fold) in many tissues 

including liver, adrenal, kidney and intestine. Very high background was 

observed in some tissues (spleen and bowel) (151). However, the most important 

problem with this system is that 3-MC is known as a carcinogen (152). The 
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tetracycline-mediated method is one of the most commonly used since it has 

several advantages over other systems. For example, mammals do not express 

an endogenous tetracycline repressor and systemic administration of this 

antibiotic to animals over long periods is harmless (153, 154). The expression of 

the transgene in transgenic animals is exclusively dependent on the 

administration/absence of tetracycline or tetracycline derivatives (155). This 

system provides a very tight control of gene expression in mammalian cells. The 

tetracycline inducible system was very efficient in regulating the oncogene HER2 

expression in transfected cell lines (NIH3T3 and MCF7) both in vitro and when 

the cell lines were injected in mice (155). The function of any gene product can 

be studied during selected developmental windows or at critical stages of disease 

using tetracycline inducible system (156). For example, transgenic mice were 

generated by Lee et. al that developed spontaneous cardiac arrhythmias in vivo 

by tetracycline regulated expression of the diphtheria toxin A (DTA) gene that 

was targeted to the hearts of adult mice. The expression of DTA caused cell loss 

in hearts of these animals that may have lead to the observed arrhythmias (156). 

Priscilla et. al used the tetracycline inducible system to express a transgene 

(luciferase) in mice. The basal luciferase activity tested in eleven different tissues 

was close to basal level in most of the transgenic mice tested (total of 19 mice). 

Administration of tetracycline activated the transgene in most tissues (over 1000 

fold induction in some cases) (157). This system was also used by Manfra et. al 

for tetracycline-dependent expression of flt3-l_ in transgenic mice. Tetracycline 

treatment induced expression of the transgene in several tissues and also 



32 

induced dramatic changes in blood levels of flt3-L, which were, on the average, 

200-fold higher than the values non-treated transgenic mice. The expression of 

flt3-L caused the relative number of DCs in peripheral blood to increase from 8 to 

40%. Cessation of flt3-L induction led to normalization of DCs numbers in blood 

(117). 

The T-Rex system (Invitrogen, CA) has been employed in this study to 

control the expression of genes of interest (SLC, CD40L or GM-CSF) in 

TRAMPC cell lines. The T-Rex system includes two vectors: the repressor 

vector (pcDNA6/TR) and the expression vector (pcDNA4/TO) (Fig. 1). The 

repressor vector expresses the tetracycline repressor protein (TR) that binds 

effectively the TetC>2 sites on the expression vector and blocks transcription 

initiation. When tetracycline is added to the culture media it binds to, and 

changes the conformation of the TR protein, so TR can no longer bind to Tet02 

sites. The result is transcription initiation and eventually expression of the gene 

down stream from the complete CMV promoter on the expression vector. 
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Figure 1. Tetracycline inducible expression system. 
The repressor vector encodes repressor protein that binds to the operator region 
(Tet02) of the expression vector and blocks the protein expression from this 
vector. Tetracycline binds to the repressor protein and induces conformational 
changes in this protein. Then, release of repressor protein from expression 
vector is followed by the protein expression from this vector. 
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The transgenic adenocarcinoma of mouse prostate (TRAMP) 

model 

To study new therapeutic approaches such as gene therapy, animal 

models of human prostate cancer with metastatic behavior are required. In this 

regard the TRAMP model was developed by Greenberg et al (158). The initiation 

and progression of human prostate is a multi-step process and it develops in the 

secretory epithelial cells of the prostate gland. In TRAMP mice, expression of 

SV40 T antigen was targeted to the epithelial cells of the prostate gland of 

C57BL/6 mice using the rat probasin promoter. Interaction of SV40 T antigen 

with p53 and retinoblastoma tumor suppressor genes can cause transformation 

of cultured cells (159). By 12 weeks of age, TRAMP mice histologically display 

mild to severe hyperplasia. Severe hyperplasia and adenocarcinoma is observed 

by 18 weeks of age. By 24-30 weeks of age, all TRAMP mice display primary 

tumors and metastasis is commonly detected in the lymph nodes and lungs and 

less frequently in the bone, kidney and adrenal glands (158). TRAMP mice have 

a number of advantages over existing models. The transgene is specifically 

expressed in the epithelial cells of the prostate. Tumor arises in all mice and the 

disease progresses from mild to sever hyperplasia and adenocarcinoma that 

metastasizes to the lymph nodes, lungs and occasionally bones (160). The 

disadvantage of this model is its relative high expense, related to requirements 

for breeding and housing the animals. Tumors develop late in the animals' life 

span (24-30 weeks) so it is also relatively slow. Furthermore, Phenotypic 



variability in pathologic progression has been observed in the TRAMP model. 

Three different cell lines (TRAMPC1, TRAMPC2 and TRAMPC3) were 

established from a primary tumor of a TRAMP mouse. TRAMPC1 and C2 are 

tumorigenic when injected subcutaneously into the flank of mice, whereas, 

TRAMPC3 grows in vitro but does not form tumors in vivo (160). Although the 

TRAMPC1 cell line is not metastatic, TRAMPC2 metastasizes to regional lymph 

nodes, submandibular salivary gland and lungs (161). 

Orthotopic model of prostate cancer and flt3-L therapy 

In order to develop a more clinically relevant orthotopic prostate cancer 

model, the non-metatstatic TRAMPC1 cell line was injected into the prostate and 

after 3 months a palpable tumor was excised and cultured in vitro. The cell line 

derived from this tumor was injected back into the prostate and after 3 passages, 

a metastatic cell line was derived that consistently grew in the prostate gland and 

produced reproducible and predictable metastases to the draining lymph nodes 

(DLNs). This cell line was designated as TRAMPC1P3 (122). 

We had previously established that orthotopic implantation of 

TRAMPC1P3 cells in immunocompetent C57BL/6 mice produced clinically 

detectable prostate tumors within 30 days with periaortic lymph node metastasis 

in almost all animals (162). This model was used to assess the utility of flt3-L in 

tumor progression. Although some animals remained tumor free for 2-3 months, 

after termination of flt3-L therapy, disease recurrence was invariably observed 



suggesting that flt3-L treated tumor-bearing mice did not develop sufficient anti

tumor immunity. Parental TRAMPC1 cells were initially developed by the 

expression of SV40 T antigen in these cells but they do not express this gene at 

either mRNA or protein level (160). Thus, the tumor-bearing host cannot mount 

an immune response to the T antigen (162). However, TRAMPC1 cells express 

Wilm's tumor gene encoded transcription factor (WT1) protein that has been 

studied as a candidate tumor antigen. Immunization with WT1 peptide did not 

prevent TRAMPC1 tumor growth in mice although CTLs pulsed with this peptide 

could lyse TRAMPC1 tumor cells in vitro (163). WT1 is an internal protein and 

should be processed and presented by MHC class I molecules on the tumor 

cells. The failure to protect mice by WT1 may reflect low expression of MHC 

class I antigen by TRAMPC1 cells. In a very recent study Fasso et al., identified 

the first "stimulators of prostatic adenocarcinoma-specific" (SPAS) tumor antigen 

called SPAS-1 using T cells from mice immunized with a GM-CSF-expressing 

TRAMP cells in combination with in vivo CTLA-4 blockade. They showed that 

vaccination of TRAMPC2 tumor bearing mice with SPAS-1 pulsed DCs resulted 

in a statistically significant delay in tumor growth indicating that this protein was 

indeed a target for anti-TRAMP tumor T cell response in vivo (164). Therefore, 

SPAS-1 tumor antigen represents the first-identified tumor rejection antigen on 

TRAMP tumor cells. Spas-1 expression was not limited to the prostate but was 

found in other tissues, with the highest level of expression in the heart. The 

expression level of Spas-1 increased in older TRAMP tumors (27 weeks) 

compared to normal prostate tissue or prostate tumor from 21 week old TRAMP 



mouse. The broad expression pattern of Spas-1 found in mice raises the 

question of possible autoimmune side effects in the setting of active 

immunotherapy that remains to be determined. 

FK3-L therapy causes regression of TRAMPC1P3 tumor in mice 

In our previous studies we evaluated the effectiveness of flt3-L therapy to 

inhibit prostate tumor growth (122). We injected mice orthotopically with 

TRAMPC1P3 cells and started flt3-L therapy one week after tumor injection to 

allow tumor cells to establish their immunosuppressive microenvironment. During 

therapy, mice were injected subcutaneously with either flt3-L or carrier. Flt3-L 

therapy inhibited prostate tumor growth but all the treated mice eventually died 

from disease after termination of the therapy. Characterization of cellular 

composition of TILs isolated from flt3-L treated compared to carrier treated mice 

showed that flt3-L did not have an impact on infiltration of natural killer cells or B 

cells. At the same time tumor was infiltrated by macrophages, DCs and 

granulocytes. By the end 30-day therapy, TRAMPC1 tumors were mainly 

infiltrated by F4/80+, CD11c+ and Gr-1+ cells but not T cells (122). The population 

of DCs that appeared in TRAMPC1P3 tumor during flt3-l_ therapy was mostly 

CD8". CD8+ DCs that are capable of antigen cross presentation (82) only 

appeared 20 days after the end of the therapy and by this time all carrier treated 

mice died. It appeared that flt3-L induced infiltration of TRAMP tumor by mostly 

myeloid cells (DCs, macrophages and granulocytes). 



Dendritic cells are thought to be the major APCs in the host and therefore 

play an essential role in the anti-tumor immune response. In view of this function, 

TRAMPC1P3 tumor infiltrating DCs (and splenic DCs) were analyzed in order to 

determine their maturational status since DCs must be mature to function 

optimally as APCs. Flt3-L treated TRAMPC1P3 tumors were infiltrated with a 

substantial number of DCs (CD11c+ cells, 23%). TRAMPC1C3 infiltrating DCs 

(TIDCs) were CD8", a subtype not capable of antigen cross presentation. TIDCs 

showed very low expression of MHC class II antigen (IAb) and they expressed 

different levels of co-stimulatory molecule B7.2 during tumor growth but the co-

expression of IAb and B7.2 was usually very limited/whereas mature DCs of 

normal spleen showed high level of IAb and B7.2 co-expression. The low 

expression of class II antigens on TIDCs represents the immature state of DCs 

that could have been induced by the TME. However, injection of TRAMPC1P3 

tumor bearing mice with soluble CD40L, known to induce DCs maturation, along 

with flt3-L did not have any further inhibitory effect on tumor growth compared to 

mice only treated with flt3-L and mice treated with CD40L alone died at a 

comparable rate as untreated mice. These results suggested that CD40L did not 

increase the efficacy of flt3-L Evaluation of draining lymph nodes immediately 

after termination of immunotherapy indicated that the majority of periaortic lymph 

nodes from carrier and CD40L treated mice had metastatic disease. Whereas 

DLNs obtained from mice treated with either flt3-L alone or in combination with 

CD40L were disease free as assessed by in vitro outgrowth of aneuploid cells. 

Analyzing the maturational status of DCs during immunotherapy showed that flt3-



L only expanded DCs that failed to express class II antigens and costimulatory 

molecules. Combination therapy using flt3-L and CD40L did not induce 

maturation of DCs in TRAMPC1P3 tumor bearing mice. 

Therefore, flt3-L immunotherapy induced tumor regression of MHC" 

prostate cancer implanted in the prostate. This therapy alone was not successful 

and did not induce long-term immunity because disease relapse occurred after 

the termination of treatment. Therefore, combination therapy may be required to 

induce DCs maturation and consequently drive clonal expansion/differentiation of 

tumor-specific T cells and the development of a memory response. In this regard, 

we propose to transfect prostate cancer cells with cytokines and chemokines and 

control their expression using tetracycline responsive promoter. Intra-tumoral 

secretion of chemokines/cytokines that are known to expand DCs and induce 

their maturation and also cause co-localization of DCs and T cells by transfected 

TRAMP cells may overcome impaired antigen presentation within the TME. In 

this thesis research, regulated expression of chemokines/cytokines by prostate 

cancer cell lines has been used to modulate the TME. It is predicted that this 

modification will enhance tumor immunity and inhibit primary tumor growth and 

metatstatic disease. It is important to evaluate immunotherapy in the animal with 

preexisting disease to have more clinically relevant model. The tetracycline-

regulated gene expression system can provide tight control over the expression 

of the genes of interest (SLC, CD40L, GM-CSF). Transgenes can be expressed 

in established tumors and their efficacy monitored by tumor regression and 
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prevention of metatstatic disease. This model therefore reflects clinical realities 

as patients seek treatment after they were diagnosed with the disease. 



CHAPTER II 

SPECIFIC OBJECTIVES 

Prostate cancer is the most frequent cancer in males and is the second 

leading cause of cancer death among men in western countries. There is no 

curative treatment available for patients with metastatic prostate cancer or with 

disease relapse after radical prostatectomy. Cancer immunotherapy aims at 

generating an efficient and long-lasting cytotoxic T lymphocyte (CTL) immune 

response for treatment of residual and metastatic disease. CTLs are activated by 

DCs that are professional antigen presenting cells (APCs). Mature DCs express 

both high levels of MHC molecules needed for specific antigenic peptide 

presentation to T cells, and high levels of co-stimulatory molecules for 

subsequent T cell activation. Previous work demonstrated that intra-tumoral DCs 

displayed an immature phenotype suggesting altered DC function. In view of this 

observation, it is anticipated that modifying the TME by the regulated expression 

of distinct cytokine/chemokine-expressing tumor cells will induce DC infiltration 

and maturation and promote accumulation of tumor-infiltrating T cells. This will 

fundamentally change the cellular composition of the TME and promote the 

development of an intra-tumoral immune response and tumor rejection. 



Hypothesis 

Proper interaction of immune cells and activation of host effector immune cells 

plays a very critical role in the induction of tumor specific immune response. We 

hypothesize that TRAMPC prostate tumors establish a microenvironment that 

suppresses the activation of immune effector cells. We further hypothesize that 

the TRAMPC tumor microenvironment prevents DCs maturation. Therefore, 

Modification of the tumor microenvironment to induce DCs maturation and their 

interaction with T cells can induce a sufficient immune response to enable the 

host to remove residual cancer cells. 

Specific aim 1 

To investigate the phenotype and functional status of dendritic cells 

infiltrating TRAMPC2 prostate tumor in vivo and after ex vivo culture. 

Cytotoxic T cells are among the most characterized effector cells of the 

immune system. It has been shown that the presence of intra-tumoral T cells 

correlates with improved clinical outcome in certain human cancers during the 

natural immune response against tumors (158). Furthermore, DCs that 

are antigen-presenting cells are known to be the most powerful activators of 

tumor-specific cytotoxic T cells (159). Cytokine and chemokines can potentially 

help target tumor antigen to DCs and induce maturation of these antigen-

presenting cells, attract immune effector cells expressing different 

cytokine/chemokine receptors and drive cellular immune response towards 



activation of CTLs. The ability of SLC to co-localize T cells and DCs (136), GM-

CSF to induce expansion and maturation of DCs (48, 128) and CD40 ligand 

(CD40L) to induce DCs maturation (48) formed the rationale to evaluate these 

cytokine/chemokines in the cancer immunotherapy. 

Specific aim 2 

To evaluate the efficacy of the SLC, CD40L or GM-CSF to induce 

dendritic cells maturation in vitro using TRAMPC cell lines expressing 

these genes. 

Maturation is the terminal differentiation process that transforms immature 

DCs specialized for antigen capture into cells specialized for T cell stimulation 

(160,161). Maturation results in increased expression of MHC, adhesion and co-

stimulatory molecules on DCs (123,162). Mature DCs can prime T cells in the 

secondary lymphoid tissues like lymph nodes and spleen to expand and 

differentiate into effector cells (117). We have previously shown that DCs 

infiltrating TRAMPC1P3 tumor microenvironment are mainly immature (163). 

SLC (130), CD40L (123) and GMCSF (164) are known to induce differentiation 

and maturation of DCs. We hypothesize that TRAMPC tumor cells induce down-

regulation of MHCII and co-stimulatory molecules on DCs. Mature DCs cultured 

with transfected TRAMPC tumor may show down-regulation of MHC antigens 

and co-stimulatory molecules. Expression of SLC, CD40L or GM-CSF by 

TRAMPC2 cells using the inducible system that we have developed is predicted 
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to cause maturation of DCs and expression of MHC and co-stimulatory 

molecules that are required for antigen presenting function of DCs. 

Specific aim 3 

To characterize the tumor infiltrating leukocytes (TILs) in the 

TRAMPC tumor expressing SLC, CD40L or GMCSF in vivo and to evaluate 

the efficacy of expression of these genes in the tumor microenvironment to 

eradicate residual prostate cancer. 

Our previous studies show that flt3-L therapy of mice bearing 

TRAMPC1P3 tumors caused tumor growth inhibition but disease relapse 

occurred in all the animals and eventually they died from urogenital complications 

within 4-5 weeks after transplantation (155). We have shown that TRAMPC1P3 

tumors treated with flt3-L are infiltrated with DCs with low expression of MHCII, 

B7.1 and B7.2 molecules that are not capable of sufficient tumor specific T cell 

activation (163). We hypothesized that immature phenotype of host DCs causes 

the failure of the flt3-L therapy in TRAMP model. Expression of SLC in the TME 

after flt3-L therapy might help co-localization of DCs and T cell and hence 

activation of T cells. Expression of CD40L or GMCSF in the TME can cause 

maturation of already mobilized DCs by flt3-L. These alterations in the prostate 

TME may enhance the immune response mediated by T cells resulting in the 

eradication of residual tumor after flt3-L therapy and preventing the disease 

relapse after termination of the therapy. 



CHAPTER III 

MATERIALS AND METHODS 

Cell and culture conditions 

TRAMP (TRAMPC1P3 and TRAMPC2) cells were cultured in Dulbecco's 

Modification of Eagle's Medium (DMEM) 1X with 4.5g/L glucose and sodium 

pyruvate and without L-glutamine (Cellgro) supplemented with 5% FBS 

(Hyclone), 10"8 Dihydrotestosterone (Sigma), 2mM L-glutamine (Cellgro), 5% Nu 

serum IV Culture Supplement (BD Biosciences), 2.5mg/ml insulin (Sigma) and 

25ug/ml penicillin-streptomycin (Gibco BRL). Cells were cultured in a 5% CO2 

incubator at 37°C. 

B16-FL cells are H-2b mouse melanoma cells that were transfected with 

the trimerized form of the flt3-L gene. These cells secrete flt3-L, thus the spleens 

of tumor-bearing mice are enlarged and are greatly enriched for myeloid cells. 

B16-FL cells were cultured in 90% DMEM (Cellgro), 10% FBS (Hyclone), 

25ug/ml penicillin-streptomycin (Gibco BRL) and 2mM L-glutamine (Cellgro). 

Cells were cultured in a 5% C02 incubator at 37°C. 

Generation of subcutaneous and intra-prostatic tumors 

To establish a subcutaneous tumor, 5x106 TRAMPC1P3, TRAMPC2 or 

B16-FL cells were injected under the skin into the flank of 6-8 week old male 

C57BL/6 mice. To establish an orthotopic tumor mice prostate glands were 
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surgically exposed and injected with 0.05ml of media containing 5X105 

TRAMPC2 tumor cells. Mice were regularly monitored for tumor growth. All 

animal protocols were conducted in accordance with National Institute of Health 

guidelines and were reviewed and approved by the Institute Animal Care and 

Use Committee of Eastern Virginia Medical School. 

Excision and processing of TRAMP tumors 

After approximately 30 days, the mice were euthanized in 100% carbon 

dioxide, and the tumor was excised aseptically. All the skin and connective 

tissue was removed, and the tumor was rinsed in RPMI (Cellgro) to remove any 

animal hair. The tumor was cut into 2mm pieces using sterile scalpels and then 

the pieces were placed into a small beaker and covered with 10-15ml of 

digestion solution (Appendix A). The tumor pieces were stirred for 45min at 37°C. 

After the 45min incubation, the tumor pieces were mashed through a screen and 

collected in a 50ml conical tube. To remove any remaining large chunks of tumor 

or tissue, the supernatant was passed through a 40pm nylon cell strainer (BD 

Biosciences) and collected in a separate 50ml tube. To stop the digestion 

process, RPMI/10%FBS was added to the tube. The cells were then centrifuged 

at 1500rpm (280xg) for 8 minutes. After centrifugation, the media was decanted 

and ~10ml of RPMI was added to the tube. A cell count was obtained using the 

Coulter Counter. 



Ficoll-hypaque gradient separation of Tumor infiltrating 

leukocytes (TILs) 

Using a 22G needle on a 10ml syringe, ~3.0ml of Isolymph (Gallard-

Schlesinger Industries, Inc) solution was added to the bottom of polystyrene 

tubes (Fisher Scientific). Then, 4x107 cells were layered on top of the Isolymph 

and the cells centrifuged at 1500rpm (280xg) in an IEC Centra-8 Centrifuge for 

20 minutes with no brake. After centrifugation, the layer of cells at the interface 

between the Isolymph and the tissue culture media was removed using a glass 

pipette. The layer of cells was placed in a separate 50ml conical tube with RPMI 

and 1% goat serum (Sigma). Finally, this tube was centrifuged at 1500rpm 

(280xg) for 5 minutes. A cell count was obtained using a Coulter Counter. After 

the gradient separation, typically ~107 leukocytes/tumor were recovered. Cells 

were kept on ice until further use. 

Preparation of splenic cells 

The enzymatic digestion solution for spleen cells with collagenase D 

(Roche Diagnostics) was prepared as follows: 400U/ml and 100U/ml of 

collagenase D was prepared in RPMI. Using a 22G needle on a 10ml syringe, 

1ml of 100U/ml collagenase D was placed into a 100mm petri dish with RPMI. 

Spleen(s) were sterilely removed from mice euthanized in a CO2 chamber and 

placed in the petri dish. Using the syringe and sterile forceps, 1ml of 100U/ml 

collagenase D was injected into the spleen. Next, sterile spatulas were used to 
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tear apart and tease the spleen. The supernatant was collected in a 50ml conical 

tube. With the remaining spleen fragments, 1ml of 400U/ml collagenase D was 

added to the petri dish, and the dish was placed in the CO2 incubator for 30-90 

minutes. After incubation, the spleen fragments were mashed through a screen 

over a petri dish. The solution that passed through the screen was collected and 

added to the 50ml tube containing the supernatant. To remove any remaining 

large chunks of spleen or tissue, the supernatant was passed through a 40pm 

nylon cell strainer (BD Biosciences) and collected in a separate 50ml tube. Next, 

the tube was centrifuged at 1500rpm (280xg) for 5 minutes. The supernatant 

was decanted and 3-4ml of Red Blood Cell lysis buffer (Appendix A) was added 

and allowed to incubate for ~5 minutes at room temperature. To stop the lysing 

process, RPMI/10%FBS was added to the tube. The tube was centrifuged again 

at 1500rpm (280xg) for 5 minutes, and the cells were counted using a Coulter 

Counter. Typically, ~107-108 total cells were recovered. Cells were kept on ice 

until further use. 

Staining for flow cytometry 

2x106 cells were placed into a flow cytometer tube. Cells were blocked by 

adding 10ul of normal goat serum (Sigma) to each tube. The tubes were 

incubated at room temperature for 10 minutes. Then, the recommended amount 

of primary antibody was added (see Appendix B for optimum antibody 

concentration). The tubes were incubated at 4°C in the dark for 20 minutes. 

After incubation, 2ml of cold wash buffer (Appendix B) was added to the cells and 
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centrifuged at 1500rpm (280xg) for 5 minutes. The supernatant was then 

decanted and the wash repeated. The pellet was re-suspended in 200ul of wash 

buffer. If secondary antibodies were required for the staining protocol, they were 

added after the primary antibody at the appropriate concentrations, with 

additional 4°C incubation in the dark for 20 minutes. Unbound secondary 

antibodies were removed by repeating the wash step above and re-suspended in 

200ul of wash buffer. Typically, the cells were immediately used for flow 

cytometric analysis. Occasionally, the cells were fixed by addition of 500ul of 1% 

paraformaldehyde, stored in dark at 4°C and then were washed before flow 

analysis. 

Isolation and purification of Gr -1 + cells 

Spleen Preparation: 

C57BL/6 mice were subcutaneously injected with 5x106B16-FL tumor 

cells. After ~3 weeks, the mice were euthanized in 100% carbon dioxide. 

Spleen(s) were harvested using sterile technique and placed in a 100mm petri 

dish with RPMI. Using forceps, the spleen was gently teased apart so that the 

capsule was left behind. With a pasteur pipette, the clumps were broken up and 

placed into a 50ml conical tube. The tube was allowed to sit for 5 minutes at 

room temperature for the debris to settle out. After 5 minutes, the supernatant 

was removed and placed into a 15ml conical tube leaving the debris behind. The 

tube was centrifuged for 10 minutes at 1500rpm (280xg). After centrifugation, 

the supernatant was decanted and 3ml Red Blood Cell lysis buffer (Appendix A) 
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was added to the tube and allowed to incubate for 2 minutes at room 

temperature. Next, 15ml of RPMI /10%FBS was added to the tube. The tube 

was centrifuged again for 10 minutes at 1500 rpm (280xg). Then, the 

supernatant was decanted and 5ml of RPMI was added. Again, the clumps were 

allowed to settle out for 5 minutes and the supernatant was removed and placed 

into another 15ml tube. These cells were counted using a Coulter Counter, 

centrifuged and re-suspended in 200ul RPMI. 

Magnetic Labeling: 

Using the single cell suspension prepared from the B16-FL tumor-bearing 

spleen, the cells were labeled with biotin-conjugated Gr-1 antibody at the 

optimum concentration and allowed to incubate at 4°C in the dark for 20 minutes. 

After incubation, the cells were washed with 2ml MACS buffer (PBS pH 7.2 

supplemented with 0.5% BSA and 2mM EDTA) and centrifuged at 1500 rpm 

(280xg) for 5 minutes. The wash was repeated, and the cells were re-suspended 

in 800ul MACS buffer. Next, 200ul anti-biotin microbeads/108 total cells (Miltenyi 

Biotec) were added and allowed to incubate at 4°C for 20 minutes. After 

incubation, the cells were washed with 2ml MACS buffer and re-suspended in 

500ul/108 total cells. 
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Magnetic Separation: 

The MS magnetic column (Miltenyi Biotec) can be used for up to 107 

positive cells and up to 2x108 total cells or the LS magnetic column (Miltenyi 

Biotec) for up to 108 positive cells and up to 2x109 total cells. The LS separation 

column was placed in the magnetic field. Then, the column was washed with 3ml 

of MACS buffer. The magnetically labeled cell suspension was added to the 

column. The column was washed three times with 3ml MACS buffer. The total 

flow through from the column was collected as the negative fraction. Finally, the 

column was removed from the magnet and 5ml of MACS buffer was added. A 

plunger was depressed forcefully through the column, washing off the cells into 

the collection tube. These were positively selected cells for the stained antibody, 

thus they were Gr-1+ cells. The separation was repeated on a freshly prepared 

column to increase the purity of the positive fraction. The cells were then 

washed in MACS buffer and centrifuged at 1500rpm (280xg) for 5 minutes. A 

cell count was obtained using a Coulter Counter and re-suspended in 1ml MACS 

buffer. Cells were kept on ice until further use. 

Dendritic cell enrichment using Nycodenz 

A single cell suspension of splenocytes was prepared as explained above. 

Splenocytes were centrifuged and resuspended in a 13.5% (wt/vol) Nycodenz 

isotonic solution (Sigma). Then the cell suspension was overlaid with RPMI/2mM 

EDTA and centrifuged for 15 minutes at 1700g (4°C). Low-density cells were 



collected from the interface, thoroughly washed in PBS/0.5% BSA and a cell 

count was obtained using a Coulter Counter. Cells were kept on ice until further 

use. 

In vitro co-culture assay 

The cellular composition of the in vitro co-culture assay employed 

Nycodenz enriched DCs and/or magnetic bead-enriched Gr-1+ cells from flt3-L 

treated mouse spleens and TRAMPC2 cells. The purified cell types were added 

to tissue culture dishes according to the ratios explained in each experiment. 

After overnight incubation at 37°C 5% C02 incubator the cells were collected and 

washed with PBS. Then the cells were labeled for flow cytometric staining 

according to the procedure(s) above. 

Generation of tetracycline inducible expression vectors 

We generated tet-inducible SLC, GMCSF and CD40L vectors 

(pcDNA4/TO/SLC, pcDNA4/TO/GMCSF and pcDNA4/TO/CD40L) using the T-

Rex system that was purchased form Invitrogen. Plasmids containing the open 

reading frames for these specific cytokines were purchased from Invivogen. The 

cytokine genes were amplified using specific primers. The sequence of the 

primers used to amplify these genes is listed below. In some cases a restriction 

site (bold letters) was inserted into the primer to be used for cloning. 

SLC primers: (BamHI site: GGA TCC) 

Forward 5'-GCG CGG GAT CCC ATG GCT CAG ATG ATG AC-3' 
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Reverse 5'-TCA TGT CGA GCT AGC GGG CTC CAG GCG-3' 

GMCSF primers: (BamHI site: GGA TCC) 

Forward: 5'-CAT TCA GGA TCC ATC ACC GGT AGA GG-3' 

Reverse: 5'-TAT CAT GTC GSG CTA GCT GGG CTT CC-3' 

CD40L primers: {Hindlll site: AAG CTT) 

Forward: 5'-CCG CGA AGC TTC ATG GCC ATA GAA ACA TAC-3' 

Reverse: 5'-TTA TCA TGT CGA GCT AGC GAA GAC TGC CAG-3' 

The PCR reactions were performed using 2.5 units of Pfuturbo DNA 

polymerase (stratagene), 0.25mM of each dNTPs (Biorad), 250ng of each primer 

and 50ng of plasmid template. The following conditions were used to amplify the 

cytokine genes: after initial denaturation at 95°C for 2 min, 4 cycles of 

denaturation at 95°C for 30 seconds, annealing at 42°C for 30 seconds, 

extension at 72°C for 2 minutes, and then another 35 cycles of denaturation at 

95°C for 30 seconds, annealing at 57°C for 30 seconds, extension at 72°C for 2 

minutes, and final extension at 72°C for 5 minutes program. 

Amplified SLC and GM-CSF genes were digested with BamHI and Nhel 

(New England Biolabs) restriction enzymes. The DNA sequence generated by 

Nhel enzyme is complementary to the sequence generated by Xbal that is in the 

multiple cloning site of the pcDNA4/TO expression plasmid. This sequence can 

be used for ligation of the cytokine gene into the expression vector. The amplified 

CD40L gene was digested with Hindlll (New England Biolabs) and Nhel 

restriction enzymes. The pcDNA4/TO plasmid was also digested with the 

appropriate enzymes for each ligation (in case of SLC and GM-CSF with BamHI 
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and Xbal and in case of CD40L with Hindlll and Xbal (New England Biolabs), 

Xbal can be ligated to Nhel as they produce compatible cohesive ends. Then 

SLC, GM-CSF and CD40L genes were ligated into the digested pcDNA4/TO 

plasmid using T4 ligase (New England Biolabs) to generate pcDNA4/TO/SLC, 

pcDNA4/TO/GM-CSF and pcDNA4/TG7CD40L Then XL-1 blue competent cells 

were transformed with each plasmid separately. Colonies of transformed bacteria 

were selected and grown in ampicillin containing Luria-Bertani (LB) broth. The 

plasmids were extracted from the bacterial culture using plasmid miniprep kit 

(Qiagen) and tested for presence of the ligated gene using different restriction 

enzymes based on Table 1: 
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Table 1. Restriction enzymes used to determine the ligation of SLC, GMCSF and 

CD40L into the pcDNA4/TO vector. 

plasmids 

pcDNA4/TO/SLC 

pcDNA4/TO/GM-CSF 

pcDNA4/TO/CD40L 

Enzymes used 

Ncol 

Ncol 

Ncol, BamHI 

Expected bands (base pair) 

3811, 1400,390,220 

3440, 1810,220 

3440, 1659,514,220 
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In order to confirm the integrity of the generated expression vectors, they 

were sequenced using the primers provided by Invitrogen in the T-Rex system. 

Transfection of TRAMPC tumor cells 

Different transfection reagents were tested in order to find one that shows 

high transfection efficiency with TRAMPC1P3 cells. The transfection reagents 

that included superfect (Qiagen), Lipofectin (Invitrogen), lipofectamine 

(Invitrogen), metafectene (Biontex), all showed efficiency of less than 1% (0.001 

to 0.01%) using the green fluorescent protein expression vector. Next we tried 

calcium phosphate and electroporation methods. Electroporation of TRAMPC1P3 

cells in the optimized condition showed about 1-2% efficiency. TRAMPC1P3 cells 

were transfected with the T-Rex system repressor vector using this method. 

TRAMPC1P3 cells that were in the log phase were harvested and incubated with 

the repressor vector in PBS for 10min on ice and then electroporation was 

performed at 800uF and 300V (low resistance) using a Biorad gene pulser 

(Model: 1652076). Cells were incubated on ice for 15min after electroporation 

and then they were cultured in fresh TRAMP media. After 48hrs, cells were 

passed into blasticidine containing media and antibiotic resistant clones were 

selected and tested for the expression of the repressor protein using 

immunofluorescence confocal microscopy. 

Finally, we tried transfection of TRAMPC2 cells with FuGENE 6 

transfection reagent (Roche) based on the protocol provided. Briefly, 2x105 

TRAMPC2 cells per well were seeded in a 6 well plate in 2ml of media. The 



following day 5ul of FuGENE 6/well was diluted with 90ul of RPMI. After a 5-

minute incubation at room temperature, 2ug of DNA/well was added to the 

FuGENE 6 mixture. To generate the tetracycline inducible cell lines TRAMPC2 

cells were transfected with two different plasmids: the tet-inducible expression 

vector and the repressor vector. The ratio of the tet-inducible expression vector 

to repressor vector was 3:1 for transfection. After a brief vortex the mixture was 

incubated for 20 minutes at room temperature. This mixture was added drop-

wise to the cells. After 48 hours of incubation the cells were passed into the 

antibiotic containing media to select for stably transfected cells. Zeocin 

(220ug/ml) and blasticidine (5ug/ml) are the antibiotic resistance genes on the 

tet-inducible expression vector and repressor vector, respectively. 

Confocal Microscopy 

TRAMPC1P3 cells (20000) were cultured in Lab-tek II tissue culture chambered 

cover glass (4 wells/slide) in 0.8ml of TRAMP media. The following day the 

media was removed and cells were fixed in 4% parafolmaldehyde for 15min at 

room temperature. Cell were washed with PBS 2 times for 5 min and then 

permeabilized with 0.5% Triton X-100 in PBS for 5 min. Then cells were blocked 

with 10% normal goat serum for 10min. Anti-Hsp70 (Stressgen) or anti-tet 

repressor (MoBiotech) (1ug each) or no antibody was added to each well and 

incubated for 30min. After 2 washes with PBS, Alexa fluor 488 goat anti-mouse 

IgG (Molecular Probes) was added and incubated for 30 min. After washing the 

secondary antibody cells were visualized using confocal microscope. 
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Identification of TRAMPC2/TR/cytokine clones that inducibly 

expressed the cytokine 

Enzyme-linked immunosorbent assay (ELISA) 

In order to identify TRAMPC2/TR/SLC and TRAMPC2/TR/GM-CSF clones 

that expressed high levels of SLC and GM-CSF respectively and had low 

background expression, we performed ELISA using kits from R and D systems. 

TRAMPC2/TR/SLC or TRAMPC2fTR/GM-CSF cells (1 x 105) were seeded in 12 

well plates in duplicates in 1ml media. The following day media was replaced 

with fresh media with or without 2ug/ml of tetracycline and the cells were 

incubated for 24 hours. The assay was performed on the third day. Briefly, the 

wells of a 96 well plate (Costar EIA) were coated with 100ul of 4ug/ml of capture 

antibody and incubated overnight at room temperature. After washing the wells 

with wash buffer (0.05% Tween20 in PBS), the wells were blocked for 1 hour with 

100ul of 1% BSA, 5% sucrose and 0.05%NaN3 in PBS. Then the samples and 

the standards were added to the wells and incubated for 2 hours at room 

temperature. The wells were washed a few times with wash buffer before adding 

100ul of horseradish peroxidase conjugated detection antibody (50ng/ml). After 2 

hours of incubation the wells were washed, 100ul of 1/200 dilution of strepavidin 

horseradish peroxidase was added to each well and incubated for 20min. At the 

end of the incubation the wells were washed and 100ul of substrate solution (R 

and D systems) was added to each well. At the end of 20 min incubation 50ul of 
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2N sulfuric acid was added to each well and the optical density of each well was 

determined using a microplate reader set to 450nm. 

Flow cytometry 

We performed flow cytometry to identify TRAMPC2/TR/CD40L clones that 

expressed high levels of CD40L and had low background expression. 

TRAMPC2/TR/CD40L cells (100,000) were seeded in 12 well plates in duplicates 

in 1ml media. The following day the media was replaced with fresh media with or 

without 2ug/ml of tetracycline and the cells were incubated for 24 hours. The 

cells were harvested using trypsin, blocked with 5ul of goat serum and washed 

with wash buffer (1%goat serum in PBS solution). PE-conjugated CD40L 

antibody (1ug, eBiosciences) was added to each tube and incubated for 20min in 

dark at 4°C. Then cells were washed twice with wash buffer and analyzed with 

flow cytometer. 

Methylation assay 

To assess whether the CMV promoter had been silenced, we assessed the 

methylation status of the promoter using a DNA methylation kit from Zymo 

research. DNA was extracted from either 3X106 cells or 15mg of tissue (prostate 

tumor) using GenomicPrep cells and tissue DNA isolation kit (Amersham 

Biosciences). Bisulfite conversion was performed using 20ug of DNA according 

to the manufacturer's protocol. Bisulfite-treated DNA (5ul) was prepared for hot-

start PCR amplification, using a pair of primers complementary to a region of 



CMV promoter not containing methylation sites (oligos 1) (forward: 5'-TAT TGT 

TAT TAT TAT GGT GAT GTG G; reverse: 5'-TTA CCC TAA AAA ATT TTA CAA 

CAT TA) or a pair of primers complementary to a region of the CMV promoter 

which contains methylation sites (oligos 2) (forward: 5'-TTA TCG TTA TTA TTA 

TGG TGA TGC G; reverse: 5*-GCC CTA AAA AAT TTT ACA GCA TTA T). 

Amplification conditions involved initial denaturation at 95°C for 5 minutes 

followed by 40 cycles of denaturation at 95°C for 45 seconds, annealing at 55°C 

for 30 seconds and elongation at 72°C for 2 minutes with a final elongation at 

72°C for 10 minutes. An aliquot of PCR products (5ul) were run on an agarose 

gel and the DNA visualized using Gel Star (Lonza Bioscience). 

GM-CSF ELISPOT 

To estimate the frequency of TRAMPC2/TR/GM-CSF cells secreting mouse 

GM-CSF we performed ELISPOT assays using a kit from R and D systems. 

TRAMPC2/TR/GMCSF cells were placed in quadricate in the wells of a PVDF-

bottom microplate in TRAMP media and incubated overnight at 37°C 5%CC>2 

incubator. Tetracycline (2ug/ml) was added to two wells from four of each clone. 

The media was removed after overnight culture and assay was performed based 

on the provided protocol. Spots were quantified using a dissection microscope. 

Detection of metastatic disease 

To detect metastatic disease in mice with TRAMP tumors, different tissues 

(lymph nodes, lungs, pancreas) were harvested using sterile techniques. Tissues 



were diced with scalpels into 1-2 mm fragments, explanted into 6-well tissue 

culture dishes, allowed to attach for 5-10 min at 37°C and cultured in 0.5 ml/well 

of growth medium at 37°C in a humidified chamber. Growth medium was 

replaced every 3-4 days and cells from explanted outgrowths expanded for 

further analysis (155). In some cases prostate tumors were cultured using the 

same technique and cells from explanted outgrowths expanded for re-injection 

into the prostate gland. 

Flow cytometric analysis of DNA content 

Derived cell lines dissociated by trypsinization were fixed in cold 70% 

ethanol and stained with 0.5 ml propidium iodide (PI, Sigma) and RNAse A (100 

U/ml) for minimum of 30min to overnight at 4°C and analyzed on a BD FACScan 

cytometer. DNA histograms were created using MODFIT software. Mouse 

splenocytes were used as an internal diploid control by spiking the samples 

before fixation and PI staining to ensure identical exposure to PI for both sample 

cells and splenocytes. 

Percoll gradient centrifugation 

Stock Percoll solution (GE healthcare biosciences) was prepared by 

mixing 9ml Percoll and 1ml 10X PBS. Then 70%, 40% and 20% Percoll was 

prepared from stock solution using 1X PBS. Single cell suspension of TILs and 

spleens were prepared as described before and resuspended in 70% Percoll. A 

volume of 2ml was placed at the bottom of 15ml conical tube and then layered 
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with 2ml 40% Percoll and 2ml of 20% Percoll and 2ml PBS on the top. Tubes 

were centrifuged for 45min at 1200g at 20°C. Interface cells were removed 

separately, washed, counted and used for further analysis. 

Statistical analysis 

All statistical analysis in these studies was performed using the PRISM 4 

statistical software package (GraphPad Software, Inc.). This package was used 

to perform Student's f-test. The software provided P values that were statistically 

significant, which was when a P value was <0.05. Any significant differences 

were noted in the text and figures corresponding to the data. 
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CHAPTER IV 

RESULTS 

To investigate the phenotype and functional status of dendritic 

cells infiltrating TRAMPC2 prostate tumor in vivo and after ex 

vivo culture. 

The function of a DC is highly influenced by its level of maturation. 

Immature DCs are capable of antigen uptake and processing but cannot present 

antigen to T cells and activate them (165). The following experiments were 

designed to evaluate the maturation status of DCs infiltrating TRAMP tumors. 

Initially TRAMP tumor infiltrating dendritic cells (TIDCs) were phenotyped using 

monoclonal antibodies and analyzed by flow cytometer. Since the majority of the 

TRAMP TIDCs were immature, we tried to identify the cell type responsible for 

induction of such a phenotype in vitro using co-culture technique. In order to 

study the functional status of TRAMP TIDCs we tried to purify these cells using 

common methods like adherence, Nycodenz and percoll gradient centrifugation. 

Phenotypic analysis of dendritic cells in the TRAMPC2 tumor 

microenvironment 

Dendritic cells play a very essential role in the generation of both innate 

and adaptive T cell-mediated immune responses in vivo; as noted previously, 

acquisition of APC function is a maturational process that manifests itself, at least 



in part, by the up-regulation of distinct cell surface molecules essential for T cell 

activation. Therefore, we assessed whether intra-tumoral DCs expressed these 

essential molecules within the prostate TME. Figure 2 shows the phenotypic 

analysis of splenic and tumor infiltrating DCs using a CD11c (a marker for DCs) 

gate (panel Aa). The majority of DCs infiltrating TRAMPC2 tumors fail to express 

class II antigen (IAb) and B7.2 co-stimulatory molecules. More than 44% of DCs 

from spleen of normal mice express IAb (B-a), whereas 34% of DCs from spleen 

of tumor bearing mice (B-b) and only 16% of tumor infiltrating dendritic cells 

(TIDCs) express IAb (B-c). Similarly, the percentage of B7.2 positive DCs was 

reduced from 44% in normal spleen (B-a) to 23% for intratumoral DCs (B-c). 

CD40 expression was also impaired by the TME as 36% of normal splenic DCs 

expressed this molecule (B-d) but only 16% of the tumor bearing splenic (B-e) 

and TIDCs expressed CD40 (B-f). Most of the TIDCs appeared to be myeloid 

DCs because most of these cells did not express CD8a (B-g, h and i). Class I 

antigen (H2Db) expression did not seem to be suppressed by the TME as almost 

all normal spleen DCs as well as tumor bearing spleen DCs and TIDCs 

expressed this antigen at equivalent levels (Fig. 2, B-d, e and f). The co-

expression of B7.2 and IAb by CD11c+ cells was reduced from 28% in normal 

spleen (B-a) to 4% in TILs (B-c). For clarity, the data presented in panel A and B 

has been plotted in as bar graphs in panels C and D. Surprisingly, the 

expression of B7.1 co-stimulatory molecule on TIDCs was not inhibited by the 

TRAMPC2 TME (panel C). The expression of the chemokine receptor CCR7 

was also suppressed in the TME relative to normal spleen. In contrast, DC 
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expression of PDL2 was elevated on intra-tumoral DCs relative to normal splenic 

DCs (10 versus 3%, respectively). Thus, these data suggest that intra-tumoral 

DCs are immature because they fail to express a number of cell surface markers 

associated with DC maturation. 
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Figure 2. Phenotypic characterization of TRAMPC2 tumor infiltrating DCs. 
Mice were transplanted with TRAMPC2 turn or cells and tumors were excised about 30 days later when tumor reached 
about 1cm in diameter. Single cell suspension from normal and tumor bearing (TB) spleens and TILs were prepared. 
Normal, TB spleen cells and TILs were stained with indicated mAbs and evaluated by 4-color flow cytometry. A: A single 
color analysis (forward scatter vs. log fluorescent intensity) of CD11c+ DCs of normal spleen (a) and TILs isolated from 
TRAMPC2 tumors (R1 shows the CD11c+ gate) (b). B: Gated CD11c+ cells from each population were assessed for 
expression of B7.2, IAb, H2Db, CD40 and CD8a molecules. The values in each quadrant indicate the percentage of cells 
in the CD11c+ gate that stained with the indicated mAbs. Panel C and D: Further phenotypic characterization of TIDCs 
displayed as bar graphs. These results are representative of 3 independent experiments. 



Enrichment of dendritic cells through adherence 

Although TRAMP TIDCs are phenotypically immature, the functional 

status of these cells is unknown. Purification of TIDCs is an important step for 

performing functional assays. We therefore tested the efficacy of several different 

methods to isolate intra-tumoral DCs. The most common procedure to enrich for 

DCs is based on the selective adherence of DCs to tissue culture plates (166). 

Dendritic cells will initially adhere to plastic but unlike macrophages, become 

detached after incubation overnight. Panels in Figure 3 show the gates for 

splenic and tumor infiltrating CD11c+ DCs. This method resulted in about two-fold 

enrichment of splenic DCs from 5% to 9% as shown in Figure 3, panels a and b. 

However the same method only enriched TIDCs from 4% in the unfractionated 

sample (3-c) to 5% in the non-adherent cells (3-d). 
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Figure 3. Enrichment of DCs through adherence. 
Single cell suspension of normal spleens and TILs isolated form TRAMPC2 
tumors were prepared as discussed in the Material and Methods. Fresh spleen 
cells and TILs were stained with CD11c antibody for comparison (panels a and 
c). Cells were cultured and allowed to adhere for about 4-5 hours. Then non
adherent (lymphocytes) cells were decanted and cells were cultured overnight 
with fresh media. The following day non-adherent cells isolated from spleen 
(panel b) and TRAMPC2 tumors (panel d) were harvested and stained with 
CD11c mAb and analyzed by flow cytometry. The numbers in each box shows 
the percentage of CD11c+ DCs in each population. 



Enrichment of dendritic cells using Nycodenz gradient centrifugation 

In view of the failure of adherence to enrich for DCs, we next evaluated 

another commonly used procedure to purify DCs, namely, Nycodenz gradient 

centrifugation. Single cell suspensions of spleen and TRAMPC2 tumor were 

therefore prepared and subjected to Nycodenz gradient centrifugation as 

explained in the Material and Methods. The cells in the interface were stained 

with CD11c antibody to identify DCs. Figure 4 (panels a and b) shows that using 

this procedure DCs isolated from spleens of B16FL tumor bearing mice were 

enriched from 34% to 82%. Performing the same procedure did not result in 

enrichment of TIDCs (panels c, d). 
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Prurified DCs from 

Figure 4. Nycodenz gradient centrifugation enriched for splenic but not tumor-
infiltrating dendritic cells. 
A single color analysis (forward side scatter vs. log fluorescent intensity) of 
CD11c+ cells of B16FI spleen (a and b) and TILs isolated from TRAMPC2 tumors 
(c and d) is shown. Single cell suspensions were prepared of spleen from B16FI 
bearing mice and TRAMPC2 tumor. Cells were stained with anti-CD11c mAb to 
determine the percentage of DCs before enrichment in spleen (a) and in TILs (c). 
Then, the remaining cells were centrifuged on a Nycodenz gradient. The 
interface cells were harvested and stained with the same mAb to determine the 
purity of DCs in B16FI spleen (b) and TILs (d). The values in each panel show 
the percentage of CD11c+ DCs in each population. 
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Enrichment of dnedritic cells using Percoll gradient centrifugation 

As a final approach to enrich for intratumoral DCs, we evaluated 

discontinuous Percoll gradient centrifugation that has been used to enrich 

leukocytes. Spleen cells and TILs were re-suspended in 70% Percoll, topped 

with layers of 40%, 20% and 0% Percoll in PBS and then centrifuged. As shown 

in Figure 5 panels A and B almost all of the leukocytes (other than T cells) from 

the spleen floated to the 70/40 interface. T cells were mostly found in the 40/20 

interface and were enriched from 20% in un-fractionated spleen cells to 40% 

after Percoll gradient. There were almost no cells in the 20/0 interface in the 

spleen. On the other hand, most of the leukocytes of TIL fraction including DCs 

were found in the 40/20 interface. Although DCs were slightly enriched in the 

40/20 interface of TILs, this fraction still contains major contamination by other 

cells like macrophages (CD11b+) and granulocytes (Gr-1+). There were almost 

no cells in the 70/40 and 20/0 interface in TILs. This experiment clearly shows 

that leukocytes and specifically DCs isolated from the TME behave abnormally 

relative to their splenic equivalents. 
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Figure 5. Efficacy of dendritic cell enrichment by discontinuous Percoll gradient 
centrifugation. 
Single cell suspensions were prepared from spleen of tumor bearing mice and 
TRAMPC2 tumors. Cells were resuspended in 70% Percoll and placed at the 
bottom of the tubes and layered on top with 40%, 20% and 0% of Percoll in PBS 
and centrifuged. Some cells were stained with indicated antibodies before 
fractionation of TILs and splenocytes for comparison. A: distribution pattern of 
spleen cells and TILs in a discontinuous Percoll gradient. B and C: percentage of 
different cell types found in the indicated interfaces when spleen cells (panel B) 
or TILs (panel C) were fractionated on Percoll. 



TRAMPC2 cells mediate dendritic cells immature phenotype in vitro 

Dendritic cell maturation is essential for the generation of an effective anti

tumor immune response. As demonstrated above and in agreement with 

findings by other groups, we showed that DCs isolated from TRAMPC2 tumors 

display an immature phenotype that may contribute to the ability of this tumor to 

grow progressively in the immunocompetent host. Bell et al. observed numbers 

of immature DCs in the tumor microenvironment of breast carcinoma to be much 

higher than in normal breast epithelium, suggesting increased homing and 

infiltration (101). High expression of HLA-DR class II (human leukocyte antigen-

DR class II) and low expression of B7.1 and B7.2 molecules on TIDCs in colon 

carcinoma sections have been described (98). Gabrilovich et al. showed that 

mature DCs from 3T3 fibroblast tumor bearing mice are not effective antigen 

presenting cells (167). Furthermore, We showed that DCs in the TRAMP TME do 

not behave as expected as we tried to purify them using different methods. 

Condensation of cytoplasm and shrinkage of the cell, membrane blebbing, 

chromatin condensation and nuclear fragmentation that are typical features of 

apoptosis has been reported when DCs were co-cultured with different tumor 

cells (168). Although causes of defects in the morphology and function of DCs 

are unknown it has been shown that granulocytes from cancer patients co-purify 

with low density peripheral blood mononuclear cells (PBMCs) on a density 

gradient rather than sediment, as expected, to the bottom of the gradient (169). 

Since we were unable to purify DCs from TRAMP tumors we performed a series 



of co-culture studies in an attempt to identify the cell type responsible for 

induction of this immature phenotype displayed by DCs infiltrating TRAMPC2 

tumors. Purified DCs from spleen of B16FL tumor bearing mice were stained 

fresh with specified antibodies and after overnight culture alone, with 5X or 10X 

TRAMPC2 cells. As shown in Figure 6, 14% of fresh DCs were IAb positive. The 

percentage of IAb positive cells increased to 38% after overnight culture. The 

addition of TRAMPC2 cells to the culture seemed to inhibit the expression of IAb 

in vitro as the presence of 5X and 10X TRAMPC2 caused the IAb expression to 

drop to 29 and 19% respectively. Interestingly the reduction of IAb expression 

seemed to be dose response effect in the presence of tumor cells. Fresh DCs 

were essentially devoid of B7.1 expression but overnight culture resulted in a 

strong up-regulation of this co-stimulatory molecule. This induction was 

suppressed in the presence of TRAMPC2 tumor cells in a dose-dependent 

fashion. A similar pattern of induction and inhibition was observed for B7.2 and 

CD40 with the exception that basal levels of these molecules were higher than 

B7.1. As shown in panel B when a CD11c gate was defined the co-expression of 

IAb/B7.1 and IAb/B7.2 increased when DCs were cultured (from 8 and 18% to 25 

and 44%, respectively). Co-culture of DCs with TRAMPC2 cells prevented the 

up-regulation of these molecules to some extent compared to DCs cultured 

alone. The co-expression of H2Db/CD40 molecules increased only about 5% 

when DCs were cultured alone; however the presence of TRAMPC2 cells 

inhibited the up-regulation of these molecules. These studies suggest that the 

immature phenotype of DCs in the TRAMP TME could be induced at least 
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partially by tumor cells. 
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Figure 6. TRAMPC2 cells partially induce the immature phenotype of tumor 
infiltrating DCs. 
Dendritic cells were purified from spleen of B16FI tumor bearing mice by 
Nycodenz gradient centrifugation. Purified DCs were stained fresh with indicated 
antibodies for comparison (a, e, I, m). Purified DCs (X) were cultured alone (b, f, 
g, n), with 5X (c, g, k, o) and 10X (d, h, I, p) TRAMPC2 cells overnight. The 
following day DCs were harvested and stained with indicated antibodies and 
analyzed using 4-color flow cytometry. Panel A: The co-expression of CD11c and 
IAb (pane a-d), B7.1 (panels e-h), B7.2 (i-l) or CD40 (m-p). Panel B: A CD11c+ 

gate was defined and the co-expression of IAb/B7.1; IAb/B7.2 and H2Db/CD40 by 
DCs in each condition was plotted. These are the results of 3 independent 
experiments. 



Immature phenotype of dendritic cells induced by TRAMPC2 cells is 

contact mediated in vitro 

TRAMPC2 cells prevent DCs to express maturation markers in vitro. This 

effect could be via direct contact or through the release of soluble factors such as 

IL-10 (170) and TGF-p (171). In order to address this issue, DCs were cultured 

with or without TRAMPC2 cells in tissue culture dishes with transwells to prevent 

cell-cell contact. As shown in Figure 7 the inhibitory effect of TRAMPC2 cells on 

DCs seemed to be mainly contact mediated. For example, no more than 11% of 

fresh bCs (panel a) were IAb positive and that increased to 71% when DCs were 

cultured alone in media (b). When 10X TRAMPC2 cells (panels c) were added to 

the cultured DCs, the expression of class II antigen was inhibited as the 

percentage of IAb positive DCs was only 44%. However, when TRAMPC2 cells 

were not in contact with DCs (panel d) the expression of IAb was 72% that was 

similar to DCs cultured alone. Similarly, fresh CD11c+ cells were 3% B7.1+ (panel 

e) and this increased to 55% when CD11c+ cells were cultured alone (panel f). 

TRAMPC2 cells inhibited the expression of B7.1 molecule by DCs (panel g) as 

only 20% of cultured CD11c+ cells in the presence of TRAMPC2 cells were B7.1 

positive, however, 34% of DCs cultured with TRAMPC2 cells in transwell 

expressed B7.1. Similar results were obtained for the expression of B7.2 

molecules by DCs and the expression of this molecule was inhibited when DCs 

were in contact with TRAMPC2 cells (panels j , k and i). However, CD40 

expression seemed to be inhibited through soluble factors as its expression by 



DCs was inhibited whether DCs were in contact with TRAMPC2 cells or not 

(panel o and p). As shown in Figure 7 panel B the percentage of IAb/B7.1, 

IAb/B7.2 and H2Db/CD40 molecules co-expression decreased compared to DCs 

cultured alone when DCs were cultured in contact with TRAMPC2 cells. The 

percentage of IAb/B7.1, IAb/B7.2 molecules co-expression did not decrease when 

DCs were cultured in transwells separated from TRAMPC2 cells. The co-

expression of H2Db/CD40 on the other hand decreased both when DCs were in 

contact or not with TRAMPC2 cells compared to DCs cultured alone which 

means that the expression of CD40 molecules by DCs could be inhibited by 

TRAMPC2 cells through soluble factors. 
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Figure 7. TRAMPC2 cells prevented maturation of DCs in vitro mainly through 
direct contact. 
A: Dendritic cells were purified from spleen of B16FI tumor mice by Nycodenz 
gradient centrifuge. Fresh DCs were stained with indicated antibodies to 
establish basal levels of expression (a, e, I, m). 2X106 (X) DCs were placed in 
the upper chamber of transwells. 5X (c, g, k, o) or 10X (d, h, I, p) or 0 (b, f, g, n) 
TRAMPC2 cells were added to the lower chamber in TRAMP media and cultured 
in 37°C, 5% C02 incubator overnight. Dendritic cells were harvested the following 
day, stained with indicated antibodies and analyzed by four-color flow cytometer. 
B: A CD11c+ gate was defined and the co-expression of IAb/B7.1, IAb/B7.2 or 
H2Db/CD40 molecules by DCs in each condition has been plotted. These are the 
results of 2 independent experiments. 



Granulocytes do not induce the immature phenotype of dendritic cells 

Although TRAMPC2 cells can inhibit culture-induced DC maturation, large 

numbers of tumor cells are required for this effect in vitro. This raises questions 

about the physiological relevance of these observations. As noted previously, 

TRAMPC2 tumors are infiltrated by large numbers of myeloid cells that could 

express immunosuppressive factors. For example, granulocytes are a major cell 

type found infiltrating TRAMPC2 tumors (130) and have been shown to have 

immunosuppressive activity (172). Therefore, we used an in vitro system to 

investigate whether Gr-1+ cells play any role in the inhibition of DC maturation in 

the TRAMPC2 TME. In this experiment we cultured DCs purified from spleen of 

B16FL tumor bearing mice alone, with purified Gr-1+ cells or with both Gr-1+ and 

TRAMPC2 cells. As shown in Figure 8 (panel A) 27% of fresh DCs (a) expressed 

IAb but when they were cultured in just media class II induction was evident 

(panel b). The addition of GR-1+ cells inhibited this maturation modestly (panel 

c), whereas, IAb expression was more dramatically inhibited in the presence of 

both tumor and Gr-1+ cells (panel d). The addition of Gr-1+ cells did not appear to 

inhibit the expression of any of the other maturation markers used in this study 

(panels e-p). As shown in panel B, co-expression of IAb/B7.1; IAb/B7.2 and 

H2Db/CD40 was down-regulated by Gr-1+ cells but the mixture of Gr-1+ and 

TRAMPC2 cells caused down-regulation of IAb, B7.1 molecules compared to the 

co-expression of these molecules by DCs cultured alone. 
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Figure 8. Granulocytes did not induce immature phenotype of DCs in vitro. 
A: Dendritic cells were purified from spleen of B16FI tumor mice by Nycodenz gradient centrifuge. Fresh DCs were 
stained with indicated antibodies for comparison (a, e, i, m). Granulocytes were purified from spleen of B16FI tumor 
bearing mice using magnetic beads. 2X106 (X) DCs were cultured alone overnight (b, f, j , n). Dendritic cells were also 
cultured with 5X Gr-1+ cells overnight (c, g, k, o) or both with 5X Gr-1+ and 2.5X TRAMPC2 cells (d, h, I, p). Dendritic cells 
were harvested the following day, stained with indicated antibodies and analyzed by four-color flow-cytometer. Panel B: A 
CD11c+ gate was defined and the co-expression of IAb/B7.1; IAb/B7.2 and H2Db/CD40 by DCs in each condition was 
plotted. These are the results of 2 independent experiments. 



The data presented here demonstrate that DCs infiltrating TRAMPC2 

tumors have an immature phenotype defined by low levels of expression of class 

II antigens and co-stimulatory molecules. Furthermore we showed that TIDCs do 

not behave normally in a variety of fractionation protocols and this prevented 

purification for functional analysis. Based on studies utilizing an in vitro co-culture 

protocol, TRAMPC2 cells appeared primarily responsible for the immature 

phenotype displayed by TIDCs. Moreover, this activity appeared to be contact-

dependent because expression of MHC class II and co-stimulatory molecules 

was not inhibited by TRAMPC2 cells when tumor cells were separated from DCs 

in transwell plates. 

Evaluation of SLC, GMCSF and CD40L to induce dendritic cell 

maturation in vitro using TRAMPC2 cell lines expressing these 

chemokine/cytokines 

It has been shown that TIDCs in several transplantable and transgenic 

mouse tumor models uniformly had an immature phenotype and were refractory 

to activation with a combination of microbial and T cell-derived stimuli (137). 

Therefore experiments were designed to first establish that maturation of purified 

immature DCs isolated from spleen of B16FL tumor bearing mice can be induced 

using bacterial stimuli and then using co-culture method to study whether 

maturation of the immature DCs can be induced in the presence of TRAMPC2 

tumor cells. Furthermore, we wanted to study whether the cytokines that are 



known to induce DC maturation were able to do so when expressed by 

TRAMPC2 cells and whether these cytokines were able to reverse the inhibitory 

effect of TRAMPC2 tumor cells on DCs. Therefore, we generated prostate 

cancer cell lines that inducibly could express specific cytokine and chemokines 

and these cell lines were used to perform these studies. 

Induction of dendritic cell maturation by LPS 

Lipopolysaccharide (LPS) is the major component of gram-negative 

bacterial cell wall and is known to induce DC maturation both in vivo and in vitro 

(134,173). As mentioned in the background section SLC, GM-CSF and 

specifically CD40L are also known to cause up-regulation of DC maturation 

markers. Lipopolysaccharide-induced DC maturation would be considered the 

maximum achievable under our experimental conditions. Immature DCs were 

therefore cultured with or without (2 fag/ml) LPS overnight. Lipopolysaccharide 

caused a very modest up-regulation of IAb from 23 to 36% (Fig. 9, panels a, b), 

but a more pronounced induction of B7 family members of B7.1 (Fig. 9, panels c, 

d), and B7.2 (Fig. 9 panels e, f). A significant induction was also observed for 

CD40 expression (Fig 9, panels g, h). 
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Figure 9. Induction of DC maturation by lipopolysaccaride in vitro. 
Immature DCs purified from spleen of B16FL tumor bearing mice were cultured 
alone (panels a, c, e, and g) or with 2 |ig/ml LPS (panels b, d, f and h) overnight. 
Dendritic cells were harvested the following day, stained using optimal 
concentration of indicated antibodies for 20 min at4°C and analyzed by4-color 
flow cytometer. A forward and side scattered gate has been set up. Panels a 
through h show flow cytometric dot plots demonstrating co-expression of the 
indicated molecules on CD11c+ cells. 



We showed here that DCs infiltrating TRAMP tumors were phenotypically 

immature and majority of them did not express the molecules required for T cell 

activation. The ultimate goal of this study is to induce maturation of DCs using 

different cytokines and chemokines in vivo. Therefore, first we wanted to 

determine whether immature DCs could be activated by LPS in the presence of 

TRAMP tumor cells. Purified immature DCs were cultured alone, with 2ug/ml of 

LPS and with 10 times more TRAMPC2 cells along with 2ug/ml LPS overnight 

(Fig. 10). Dendritic cells were harvested and stained with indicated monoclonal 

antibodies and analyzed by flow cytometer. Cultured DCs were 47% IAb positive 

while addition of LPS caused up-regulation of IAb to 74%. In the presence of 

both TRAMPC2 cells and LPS immature DCs still up-regulated IAb (51%) 

although not to the extent that LPS had caused in the absence of TRAMPC2 

tumor cells (Fig. 10, panels a, b and c). While only 1% of cultured DCs expressed 

B7.1, DCs cultured with LPS were 7% B7.1 positive and addition of TRAMPC2 

cells caused higher percentage of DCs to express B7.1 (20%) (panels d, e and f). 

The same results were observed with B7.2 and CD40 molecules. These data 

showed that although TRAMPC2 cells prevented DC maturation but the 

immature DCs that were exposed to tumor cells were still capable of up-

regulation of class II antigens and co-stimulatory molecules. 
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Figure 10. Immature DCs in contact with TRAMPC2 cells can still undergo 
maturation. 
Purified immature DCs (X) were cultured alone, with LPS (2ug/ml) and with LPS 
(2ug/ml) in the presence of TRAMPC2 (10X) overnight. Dendritic cells were 
harvested the following day, stained using optimal concentration of indicated 
antibodies for 20 min at 4°C and analyzed by 4-color flow cytometer. Panels a 
through h show flow cytometric dot plots demonstrating co-expression of the 
indicated molecules on CD11c+ cells. 



Generation and characterization of stably transfected TRAMPC1P3 cells 

with regulated transgene expression 

To generate TRAMP cell lines with regulated expression of cytokines of 

interest, TRAMPC1P3 cells were first transfected with the repressor protein by 

electroporation. After about 3 weeks of selection in blasticidine, antibiotic 

resistant clones were screened for the expression of the repressor protein by 

confocal microscopy using a monoclonal antibody against the tet repressor 

protein (TR) protein. Figure 11A shows that -80% of the cells displayed 

constitutive expression of TR protein in the cytosol and nucleus of TRAMPC1P3 

cells. In Figure 11B a mAb against heat shock protein 70 was used as positive 

control. 
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Figure 11. Expression of tetracycline repressor protein in transfected 
TRAMPC1P3 tumor cells. 
TRAMPC1P3 tumor cells were transfected with the pcDNA6/TR vector by 
electroporation. Cells were subsequently stained with mAbs against either TR (A) 
or murine heat shock protein 70 (B). 



In the course of maintaining transfected cells for further transfection with 

different expression vectors, we observed that with continuous passage, 

expression of the repressor protein diminished (data not presented). We 

therefore considered the possibility that TR protein expression may have 

reflected episomal activity of the vector. To minimize this possibility, we 

performed several additional transfection experiments using linearized 

pcDNA6/TR DNA. However, transfection with linearized vector did not prevent 

diminished TR protein expression during maintenance of this cell line in vitro 

(data not shown). One way to explain our inability to detect repressor protein in 

transfected clones after in vitro passages was very low expression of the 

repressor protein. This could happen through different mechanisms like losing 

the gene or silencing the gene's promoter. 

Generation and characterization of stably transfected TRAMPC1P3 cells 

with the repressor and SLC expression vectors 

Previous experiments showed that when TRAMP cells were transfected 

with the repressor vector the repressor protein could be detected by confocal 

microscopy using a mAb against TR. However, after a few in vitro passages it 

seemed that these cells did not have high enough concentration of the repressor 

protein to be detected by confocal microscopy. However the amount of the 

repressor protein could be enough to prevent the expression of the gene of 

interest from the expression vector. As an alternative approach we tried to co-



transfect TRAMPC1P3 tumor cells with TR vector and SLC expression vector 

(pcDNA4/TO/SLC) and screen for the expression of SLC protein in the absence 

and presence of tetracycline. Therefore, we co-transfected TRAMPC1P3 cells 

with the repressor vector and SLC expression vector using Fugene 6 that 

showed higher transfection efficiency for TRAMP cells than electroporation. 

Cells were passed into media containing antibiotics (zeocin and blasticidine) and 

antibiotic resistant clones were maintained for 3-4 weeks before they were tested 

for the expression of SLC. We performed an ELISA using the supernatant of 

TRAMPC1P3/TR/SLC cells when they were cultured with or without 2ug/ml of 

tetracycline for 24hr. Figure 12 shows two different TRAMPC1P3/TR/SLC clones 

that were tested for inducible expression of SLC. Clone #3 when it was initially 

tested (passage 1) showed a relatively high SLC expression with tetracycline 

(about 180pg/ml) and low background (30pg/ml). After three additional in vitro 

passages (passage 4) SLC expression by clones #3 was lower (131 pg/ml) and 

had higher background (58 pg/ml). When Clone #4 was tested for the first time it 

expressed 130 pg/ml of SLC when induced with tetracycline and had no 

detectable background expression. However, clone #4 expressed about 84 

pg/ml of SLC without tetracycline induction at passage 4 and expressed 90 pg/ml 

when induced. It seemed that in vitro passages resulted in increased "leakiness" 

of the clones amd lowered expression levels following induction by tetracycline 

(Fig. 12). 
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Figure 12. Expansion of TRAMPC1P3/TR/SLC cells in vitro is associated with 
loss of tet-inducible expression of SLC. 
TRAMPC1P3 cells were co-transfected with TR and SLC expression vectors and 
two tet-inducible clones expanded in vitro in the presence of antibiotics. The 
concentration of SLC in the supernatant was determined after 24 hr of induction 
in the presence of 1 ug/ml of tetracycline. After 4 passages the same clones 
became "leaky" and were less inducible by tetracycline. 
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Next we sub-cloned TRAMPC1P3/TR/SLC clones that showed some level 

of SLC expression in order to isolate cells that expressed higher levels of SLC 

with low background expression. In another series of transfection experiments, 

two representative tet-inducible clones were sub-cloned by limiting dilution in an 

attempt to isolate stable transfectants. Two out of 62 sub-clones had negligible 

background and relatively high induction level; however, after 3 passages the 

induction level diminished and then became undetectable after several additional 

passages (Fig. 13 and data not presented). TRAMPC1P3/TR/SLC 2-19 (Fig. 

13), a sub-clone derived from clone 2, had no background expression with an 

induced level of SLC expression of 206 pg/ml when it was first tested. After three 

additional passages, the same cell line had higher background (64 pg/ml) and 

lower tetracycline inducible level of SLC expression (123 pg/ml). When 

TRAMPC1P3/TR/SLC clones were tested again after a few more passages, no 

SLC expression was detected (data not shown). 
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Figure 13. Loss of tet-inducible expression in subclones derived from 
TRAM PC 1P3/TR/SLC cells. 
TRAMPC1P3 cells were transfected with TR and SLC expression vectors and 
two positive clones (2 and 5) were identified by ELISA. After several passages, 
both lines showed high background expression and possessed minimal induction 
with tet. These lines were sub-cloned by limiting dilution method and then 
screened for SLC induction. Three positive sub-clones derived from either clone 
2 (2-19) or clone 5 (5-4, 5-42) that had low background and high initial SLC 
induction. After three additional passages, tet induction either diminished or 
became undetectable. 



The fact that all TRAMPC1 P3n"R/SLC clones shown in Figure 13 lost the 

expression of SLC after passages in vitro may reflect loss of the SLC gene. To 

assess this possibility, PCR primers were designed that could amplify the 

transfected SLC gene but not endogenous SLC gene. Genomic DNA was 

extracted from TRAMPC1P3/TR/SLC clones 2-19 and 5-4 (Fig. 13) and 

transfected SLC gene was amplified by PCR. This analysis indicated that the 

transfected SLC gene was not detectable by PCR in either of the two previously 

positive sub-clones (Fig. 14). 
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Figure 14. Loss of the SLC gene in transfected TRAMPC1P3 cells during 
expansion in vitro. 
Genomic DNA was extracted from TRAMPC1P3/TR/SLC sub-clones (2-19 and 
5-4) that originally had displayed tet-inducible SLC production. The transfected 
SLC gene was amplified by PCR using primers specific for the SLC gene and 
tetracycline operator sequences present in the vector. Using these primers, no 
product was detected using parental TRAMPC1P3 DNA (data not shown). Lane 
1 contains molecular weight markers and lanes 2 and 3 were loaded with DNA 
from sub-clones 2-19 and 5-4. PcDNA4/TO/SLC expression vector was used as 
positive control for the PCR reaction (Iane4). 



Isolation and characterization of transfected tetracycline inducible 

TRAMPC2 clones with high SLC production in vitro 

The difficulty in isolating stable transfectants of TRAMPC1P3 cells 

expressing inducible cytokines prompted us to evaluate TRAMPC2 tumor cells. 

The TRAMPC2 cell line was derived from the same TRAMP tumor as TRAMPC1 

and is very similar to TRAMPC1 (153). There is one major difference between 

these two TRAMP lines; TRAMPC2 is metastatic when injected subcutaneously, 

whereas, TRAMPC1 is locally invasive but not metastatic (115, 174). We 

therefore transfected both TRAMPC2 and TRAMPC1P3 cell lines with TR and 

pcDNA4/TO/SLC expression vectors using Fugene 6 transfection reagent. 

Transfected cells then were selected in antibiotics (zeocin and blasticidine) for 

about 3 weeks. The antibiotic resistant clones were expanded and tested for 

inducible expression of SLC by ELISA. Six TRAMPC2/TR/SLC clones were 

isolated that possessed low constitutive expression of chemokine and an 

impressive 12- to 60-fold induction of SLC in the presence of tetracycline (Fig. 

15, panel A). Two of the TRAMPC1P3/TR/SLC clones showed a 5-6-fold 

induction of SLC similar to what was observed in the previous experiments (data 

not presented). To test if TRAMPC2/TR/SLC lines would maintain tet-inducible 

expression, cells were re-tested after 3 and 6 additional passages. Three of 

clones still had a remarkable induction with tetracycline (Fig. 15 panel B). These 

clones also had a very low constitutive level of SLC expression (Fig. 15, note 

scale change). As shown in Figure 15 clone #6 had low background (100 pg/ml) 



and 1800pg/ml tet induced level of SLC. After 3 and even 8 in vitro passages 

clone #6 still showed low level of background but the level of tet induced SLC 

decreased to about 700 pg/ml after 3 passages and to 500pg/ml after 8 

passages. Clones #4 and 5 had high level of SLC induction at passage 1 (1900 

and 1000 pg/ml, respectively). At passage 3 the level of inducible expression of 

clones #4 and 5 dropped to 1300 and 600 pg/ml. But after 8 passages the level 

of tet inducible expression of clones #4 and 5 increased to 3500 and 3200 pg/ml 

(panel C). These two clones maintained very low background through all the 

passages. Although these clones had variable levels of SLC induction they 

maintained the expression of SLC after in vitro passages. 
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Figure 15. TRAMPC2/TR/SLC cells maintain regulated expression of SLC in 
vitro. 
TRAMPC2 cells were transfected with the repressor and SLC expression vectors 
using Fugene 6 transfection reagent. Two days after transfection cells were 
passed into antibiotics containing media. A: After about three weeks of selection 
in antibiotics the antibiotics resistant clones (TRAMPC2/TR/SLC #4, 5 and 6) 
were tested for SLC expression with and without 2ug/ml of tetracycline by ELISA. 
ELISA was performed after 3 (B) and 8 (C) passages to test whether these 
clones maintained the inducible expression of the transgene. 



Secondary lymphoid tissue chemokine secreted by TRAMPC2 ceils does 

not induce DC maturation in vitro 

Having established TRAMPC2/TR/SLC cell lines we next studied the impact of 

SLC on DC maturation when secreted by transfected TRAMPC2 cells in vitro. In 

this experiment DCs (X number) purified from the spleen of B16FL tumor bearing 

mice were cultured alone, with 10X TRAMPC2 and 10X TRAMPC2/TR/SLC (in 

the presence of 2ug/ml tetracycline) overnight and stained with the indicated 

antibodies the next day. Fresh DCs were also stained for comparison. The 

concentration of CCL21 in the lymph node has been estimated to be 11-12 

ug/ml, and is likely considerably higher within the T cell zones (175). The 

concentration of SLC in the media of cultured DCs was about 2ug/ml. As shown 

in Figure 16 only 6% of fresh CD11c+ cells expressed IAb (panel a) whereas 39% 

of cultured CD11c+ cells express IAb (panel b). TRAMPC2 cells prevented IAb 

expression by DCs to about 18% (panel c) that was only increased to 20% when 

TRAMPC2 cells expressed SLC (panel d). This was still lower than IAb 

expression when DCs were cultured alone (39%). While only 3% of fresh DCs 

expressed B7.1 (panel e), 15% of cultured DCs expressed this molecule (panel 

f). When DCs were cultured with 10 times more TRAMPC2 cells the percentage 

of B7.1 positive DCs dropped to 8% (panel g), which increased slightly (11%) 

when SLC was expressed byTRAMPC2 cells (panel h). Fresh DCs were 5% 

B7.2 positive (panel i) and cultured DCs were 26% B7.2 positive (j). The 

percentage of B7.2 positive DCs decreased when DCs were cultured with 
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TRAMPC2 cells to 10% (k) and it increased very modestly 13% when TRAMPC2 

cells expressed SLC (panel I). The co-expression of IAb and co-stimulatory 

molecules increased after over night culture compared to fresh DCs and 

TRAMPC2 cells caused down-regulation of these molecules as shown in Figure 

16B. Expression of SLC in the culture by TRAMPC2 cells caused a very 

moderate increase in the co-expression of IAb/B7.1 and IAb/B7.2 by DCs 

although this up-regulation did not overcome the inhibitory effect of TRAMPC2 

cells on DCs. Although H2Db/CD40 co-expression decreased when DCs were 

cultured with TRAMPC2 cells compared to DCs cultured alone, SLC did not 

cause an increase in the co-expression of these molecules. Although SLC has 

been shown to induce DC maturation but it is not as potent as GM-CSF and 

CD40L.These results show that SLC could not reverse the inhibitory effect of 

TRAMPC2 tumor cells on DC maturation and did not cause maturation of 

immature DCs in the presence of tumor cells. 
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Figure 16. Secondary lymphoid tissue chemokine does not induce DC 
maturation. 
Panel A: DCs were purified from spleen of B16fl tumor bearing mice using 
Nycodenz gradient centrifugation. Fresh DCs were stained for comparison (a, e, i 
and m). Dendritic cells were cultured alone (b, f, j and n), with 10X TRAMPC2 (c, 
g, k and o) or 10X TRAMPC2/SLC (d, h, I and p). Cultured DCs were harvested, 
stained with indicated antibodies the following day and analyzed with 4-color flow 
cytometer. Panel B: A CD11c gate was defined fro the data presented in panel A 
and the percentage of CD11c+ cells that co-express IAb/B7.1; IAb/B7.2 and 
H2Db/CD40 in each population (Fresh DCs, cultured DCs, DCs/TRAMPC2 and 
DCs/TRAMPC2/SLC) has been plotted. 



Isolation and characterization of transfected TRAMPC2 clones with high 

and stable production of CD40L inducible with tetracycline in vitro 

In view of the fact that TRAMPC2 tumors are infiltrated with immature DCs 

we used the tetracycline inducible system to express CD40L in TRAMPC2 tumor 

microenvironment. It has been shown that CD40L in a potent inducer of DC 

maturation (65). We transfected TRAMPC2 cells with the repressor vector and 

the pcDNA/TO/CD40L expression vector. The transfected cells were selected 

with two antibiotics (zeocin and blasticidine). Antibiotic resistant clones were then 

isolated, expanded and tested for induction of CD40L expression after incubation 

with tetracycline. We isolated a single TRAMPC2/TR/CD40L clone that when 

induced with tetracycline more than 50% of the cells expressed CD40L 

compared to 11% background expression of CD40L without induction (Fig. 17). 
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Figure 17. Tet-inducible regulation of CD40-ligand expression in transfected 
TRAMPC2 cells. 
TRAMPC2 cells were transfected with repressor and pcDNA4/TO/CD40L 
expression vector. Transfected cells were selected in antibiotics (zeocin and 
blasticidine) containing media. Cells from an antibiotic resistant clone were 
seeded into 12 well plates (106/ml) in duplicate. The next day media was 
replaced with 1 ml fresh media with or without 2ug/ml of tetracycline. Cells were 
harvested the following day, blocked with normal goat serum and then stained 
with a FITC-conjugated mouse anti-CD154 (CD40L) or FITC-conjugated hamster 
IgG (negative control). Following a final wash step, cells were analyzed by flow 
cytometry. Quadrants were drawn based on the isotype control. Plotted are 
CD40L staining versus side scatter (SSC) on cells incubated in the absence (left 
panel) or presence of tetracycline (right panel). 

No Tet 



CD40L secreted by TRAMPC2 cells reversed prevention of dnedritic cell 

maturation induced by tumor cells in vitro 

Activation of the CD40 receptors is one of the critical signals that allow the 

full maturation of DCs into potent APCs (165). Dendritic cell maturation signals 

may be delivered by an antigen-specific CD4+ T cell when it recognizes antigen 

on the surface of the DC and signals the DC through CD40-CD40L interaction 

(176). Dendritic cell maturation may also be induced by exposure to cytokines 

(TNF-a, IL-1(3) (177-179), bacterial components (LPS) (180), CpG containing 

DNA (181,182) or double-stranded RNA (183). In addition, the T-cell-mediated 

maturation of DC may be mimicked by artificial CD40 triggering through anti-

CD40 antibodies (184) or CD40L transfected cells (65). Therefore we studied 

whether CD40L expressed by TRAMPC2 cells can overcome the suppressor 

effect of TRAMPC2 cells on DCs in vitro. Purified immature DCs were cultured 

alone, with TRAMPC2 cells or stably transfected TRAMPC2/TR/CD40L cells (in 

the presence of tetracycline) and stained with the indicated mAbs the following 

day (Fig. 18). Fresh DCs were also stained for comparison. Fresh DCs were 8% 

IAb positive (panel a) that increased to 29% when DCs were cultured (panel b). 

The presence of TRAMPC2 induced a reduction of IAb positive DCs to 12% 

(panel c) and this was not considerably increased by CD40L expression on 

TRAMPC2 (panel d). TRAMPC2 cells reduced B7.1 and CD40 expression to 4 

and 3%, respectively (panels g and o), whereas, 7 and 9% of DCs were positive 

for these molecules when cultured in media (panels f and n). The expression of 
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B7.1 and CD40 molecules by DCs was moderately up-regulated when DCs were 

cultured with TRAMPC2/TR/CD40L (10 and 12% respectively, panels h and p). 

While 2% of fresh DCs were B7.2 positive (panel i), cultured DCs were 13% B7.2 

positive (panel j). TRAMPC2 cells decreased the number of B7.2 positive DCs to 

8% (panel k) and expression of CD40L by TRAMPC2 caused up-regulation of 

this molecule to 14% (panel I). In Figure 18, panel B a CD11c gate was defined 

and the co-expression of IAb/B7.1, IAb/B7.2 and H2Db/CD40 by DCs in each 

condition was studied. The co-expression of IAb/B7.1 and IAb/B7.2 increased 

after over night culture of DCs compared to fresh DCs. The co-expression of 

IAb/B7.1 and IAb/B7.2 was decreased by addition of TRAMPC2 cells to the 

culture. CD40L expression by TRAMPC2 cells caused an increase in the co-

expression of IAb/B7.2 and IAb/B7.1. The level of IAb/B7.1 expression by DCs in 

the presence of TRAMPC2/TR/CD40L was as high as the cultured DCs. 

TRAMPC2 cells caused down-regulation of H2Db/CD40 co-expression compared 

to cultured DCs however, expression of CD40L by TRAMPC2 cells caused up-

regulation of these molecules but not even to the same level as cultured DCs. 

Therefore CD40L that has been shown to induce DC maturation, when 

expressed by TRAMPC2 cells could reverse the inhibitory effect of TRAMPC2 

cells. Although CD40L was not very potent inducer of DC maturation when 

secreted from TRAMPC2 cells but prevention of inhibitory effect of TRAMPC2 

cells can be enough to induce sufficient immune response to inhibit tumor 

growth. 
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Figure 18. Inhibition of DC maturation by TRAMPC2 cells is reversed when CD40L expressed by TRAMPC2 cells in vitro. 
Panel A: DCs were purified from spleen of B16FL tumor bearing mice using Nycodenz gradient centrifugation. Fresh DCs 
were stained for comparison (a, e, i and m). DCs were cultured alone (b, f, j and n), with 10X TRAMPC2 (c, g, k and o) or 
10X TRAMPC2/CD40L (d, h, I and p). Cultured DCs were harvested, stained with indicated antibodies the following day 
and analyzed with 4-color flow cytometer. Panel B: A CD11c gate was defined for data presented in panel A and the co-
expression of IAb/B7.1, IAb/B7.2 and H2Db/CD40 by DCs in each condition (Fresh DCs, cultured DCs, DCs/TRAMPC2 
and DCs/TRAMPC2/CD40L) was plotted. 
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Isolation and characterization of transfected TRAMPC2 clones with high 

and stable and inducible production of GM-CSF in vitro 

Expression of GM-CSF has been shown to stimulate the recruitment of 

antigen-presenting cells (DCs and macrophages) to the tumor site, suggesting 

the involvement of GM-CSF in the augmentation of tumor-antigen presentation 

(76). Moreover, GM-CSF induces the maturation of these DCs (128). In humans 

immature DCs require exposure to GM-CSF to undergo differentiation into 

mature antigen presenting cells (118). We speculated that murine DCs may also 

require exposure to this chemokine before maturation can be induced with 

CD40L and IFN-y. Therefore, to examine the role of GM-CSF in DC maturation 

particularly within the TME, we co-transfected TRAMPC2 cells with the repressor 

and pcDNA4/TO/GM-CSF vectors. Antibiotic resistance clones were isolated 

and tested for induction of GM-CSF expression after incubation with tetracycline. 

Figure 19 illustrates a typical experiment where three isolated clones 

demonstrate tet-induced production of GM-CSF. 
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Figure 19. Tetracycline-regulated production of GM-CSF in TRAMPC2 tumor 
cells co-transfected with repressor and GM-CSF vectors. 
TRAMPC2 lines were co-transfected with TR vector and pcDNA4/TO/GM-CSF 
expression vector. Antibiotic resistant clones were isolated and expanded in vitro. 
Cells from each clone were then seeded into 12 well plates in duplicate. The 
next day media was replaced with 1 ml fresh media with or without 2ug/ml of 
tetracycline. Supematants were harvested the following day and tested by ELISA 
for GM-CSF expression. 
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Granulocyte macrophage-colony stimulating factor secreted by TRAMPC2 

cells reversed down-regulation of dendritic cell maturation markers 

induced by tumor cells in vitro 

Immature DCs enlarge, express more MHC, co-stimulatory and adhesion 

molecules when they are cultured with GM-CSF (185), characteristics of mature 

DCs. Therefore, we cultured purified immature DCs with TRAMPC2/TR/GM-CSF 

(in the presence of 2ug/ml of tetracycline) to study whether GM-CSF can induce 

DC maturation in the presence of TRAMPC2 (Fig. 20). As demonstrated in 

Figure 20, 10% of fresh DCs (panel a) and 25% of cultured DCs (panel b) 

expressed IAb. When TRAMPC2 cells were added to the culture, the percentage 

of IAb positive DCs decreased to 6% (panel c) that was partially reversed when 

cultured with transfected TRAMPC2 cells (panel d). Similar to class II antigens, 

the expression B7.1, B7.2 and CD40 increased when fresh DCs were cultured in 

vitro relative fresh DCs [compare fresh DCs (panels e, i and m) to cultured DCs 

(panels f, j and n)]. TRAMPC2 cells in culture caused a reduction of B7.1, B7.2 

and CD40 expression by DCs (panels g, k and o). When GM-CSF was secreted 

from TRAMPC2/GM-CSF cells the percentage of B7.1, B7.2 or CD40 positive 

DCs increased almost to the same level as cultured DCs [compare cultured DCs 

(panels f, j and n) to DCs cultured with TRAMPC2/GM-CSF (panels h, I and p)]. 

Therefore, It seems that GM-CSF when expressed by TRAMPC2 cells can 

reverse the inhibitory effect of TRAMPC2 cells on DC maturation in vitro but it 

could not induce further maturation of DCs. Figure 20 panel B shows that when 
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gated on CD11c+ cells the co-expression of IAb/B7.1, IAb/B7.2 and H2Db/CD40 

decreased when DCs were cultured with TRAMPC2 cells compared to cultured 

DCs. Although expression of GM-CSF by TRAMPC2 cells did not cause 

markedly high expression of the class II antigens and co-stimulatory molecules 

but at least in some cases it partially and in some other cases completely 

overcame the inhibitory effect of TRAMPC2 cells. Although the effect of GM-CSF 

was not very striking in vitro this could be very important in the initiation of a 

potent immune response in vivo. 
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Figure 20. GM-CSF secreted by TRAMPC2 cells reverses down-regulation of DC 
maturation markers induced by tumor cells in vitro. 
Panel A: DCs were purified from spleen of B16fl tumor bearing mice using 
Nycodenz gradient centrifugation. Fresh DCs were stained for comparison (a, e, i 
and m). DCs were cultured alone (b, f, j and n), with 10X TRAMPC2 (c, g, k and 
o) or 10X TRAMPC2/GM-CSF (d, h, I and p). Cultured DCs were harvested, 
stained with indicated antibodies the following day and analyzed with 4-colorflow 
cytometer. Panel B: A CD11c gate was defined for data presented in panel A and 
the co-expression of IAb/B7.1, IAb/B7.2 and H2Db/CD40 by DCs in each condition 
(Fresh DCs, cultured DCs, DCs/TRAMPC2 and DCs/TRAMPC2/GM-CSF) was 
plotted. 
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To characterize the tumor infiltrating leukocytes (TILs) in the 

TRAMPC tumor expressing SLC, CD40L or GMCSF in vivo and to 

evaluate the efficacy of expression of these genes in the tumor 

microenvironment to eradicate residual prostate 

It is known that GM-CSF, CD40L and SLC induce DC maturation and SLC 

causes co-localization of DCs and T cells. We also showed that GM-CSF and 

CD40L when expressed from TRAMPC cells could reverse the inhibitory effect of 

tumor cells of DC maturation in vitro. These results prompted us to study the 

effect of expression of these cytokines on tumor growth in vivo. Even if the 

expression of these cytokines could cause maturation of a part of DCs infiltrating 

TRAMP tumor this can be enough to induce a potent immune response and 

prevent tumor growth. Although SLC could not induce DC maturation in vitro but 

it can still induce a potent immune response through co-localizing DCs and T 

cells. Since we used the tetracycline inducible expression system, first we 

wanted to make sure the repressor protein was not immunogenic and therefore 

we injected mice with the TRAMPC1P3 cells stably transfected with the 

repressor vector. Next, we designed experiments to inject TRAMPC2/TR/CD40L, 

TRAMPC2/TR/GM-CSF or TRAMPC2/TR/SLC cells into mice and study the 

effect of cytokine/chemokine expression on the tumor growth, metastasis and 

survival of the tumor bearing mice. 
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In vivo growth of TRAMPC1P3 cells expressing the repressor protein 

The possibility exists that any host that has a competent immune system 

will reject tumor cells that express a foreign (bacterial) protein. This is a serious 

complication for a project evaluating novel immunotherapies where a competent 

immune system is a necessity. It has been shown that the expression of 

membrane-bound heat shock protein (mbHSP70) on the surface of the mouse 

mastocytoma cell line P815 enhanced immunogenicity of tumor cells (186). In 

this study the in vivo effect of mbHSP70 was evaluated by comparing the growth 

of mbHSP70 transfected cells to that of mock-transfected cells in DBA/2 mice. 

Fifty percent of mice rejected mbHSP70 transfected cells while 100% mice 

developed tumors in the control group (186). Furthermore, we had already 

experienced this problem when we injected mice with TRAMPC1 cells that were 

transfected with green fluorescent protein (TRAMPC1/GFP). TRAMPC1/GFP 

cells grew efficiently in athymic nude mice and remained GFP+ even after several 

months of growth in vivo; however, these cells never produced tumors in 

immunocompetent C57BL6 mice (data not shown). They were also not 

transplantable into the prostate glands of syngeneic mice, a site considered 

immunologically "privileged". To address this issue, TRAMPC1P3/TR cells were 

transplanted subcutaneously into 4 mice. Control mice received the parental 

TRAMPC1P3 tumor. All mice that received TRAMPC1P3/TR tumor cells 

developed tumors at rates indistinguishable from mice that received parental 
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TRAMPC1P3 cells (data not shown). After several months of growth, tumors 

were excised, cut into small pieces and cultured in TRAMP media. Cells from the 

developed cell line were stained with an anti-TR monoclonal antibody and 

visualized by confocal microscopy. Three out of four tumors had sufficient TR 

protein levels in the cytosol and nucleus to be detected by this technique (Fig. 

21). These data suggest that the TR protein is either not immunogenic or not 

sufficiently immunogenic to induce an immune response that alters the growth 

properties of TRAMPC1P3/TR tumor cells. 
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Figure 21. Detection of repressor protein in TRAMPC1P3/TR cells after long-
term growth in vivo. 
Mice received either 5 x 106 TRAMPC1P3 or TRAMPC1P3/TR cells 
subcutaneously and then were monitored for tumor growth twice weekly. Tumors 
were excised when they were >100 cm2, grown in tissue culture chambers and 
then stained with either an isotype matched control or anti-TR protein antibody. 
TR protein was detected in TRAMPC1P3/TR cells incubated with the anti-TR 
antibody (B) but not with the isotype control antibody (A). Similarly, no staining 
was detected in TRAMPC1P3 cells stained with anti-TR protein antibody (data 
not shown). Fluorescence images were visualized by confocal microscopy and 
analyzed using Metamorph software. 
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In vivo growth of TRAMPC2/TR/GM-CSF clones 

TRAMPC2/TR/GM-CSF cells clone 3, 5 and 6 (Fig. 19) were pooled and 

injected into the prostate of 7 mice, 6 of them grew tumors that were removed, 

diced and cultured without antibiotics. From 74 explants we developed cell lines 

that were tested by ELISA for inducible expression of GM-CSF. Explants from 

two tumors were not inducible by tetracycline and were not studied further. Cells 

derived from the four remaining tumors were inducible with tetracycline but 

manifested relatively low production of GM-CSF. A representative example is 

presented in Figure 22, panel A. Because cell lines from individual tumors were 

similar in terms of GM-CSF production, we pooled clones derived from each 

tumor and subjected them to antibiotic selection. After this selection step cell 

lines were expanded and tested for tet-induced production of GM-CSF. Although 

this process enhanced GM-CSF production, most lines had high constitutive GM-

CSF production and displayed only a modest induction with tetracycline (panel 

B). 
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Figure 22. Diminished tet-regulated expression of GM-CSF following 
intraprostatic growth of TRAMPC2/TR/GM-CSF tumor cells. 
Cells from TRAMPC2/TR/GM-CSF clones 3, 5 and 6 were pooled (Fig. 19) and 
injected into prostate glands of syngeneic mice. When tumors were palpable 
they were excised and explants incubated in vitro in tissue culture media in the 
absence of antibiotic selection. Panel A: Individual clones were isolated, 
expanded and then induced with tetracycline. The following day supematants 
were tested by ELISA for GM-CSF expression. Shown are representative data 
from clones derived from two tumors from mouse #1 and #7 (M1, M7). Panel B: 
Clones derived from individual tumors were pooled, subjected to antibiotic 
selection and then expanded in vitro. Aliquots were incubated with tetracycline 
and the following day supematants evaluated for GM-CSF production. Shown 
are data from tumor cells obtained from four individual mice (M1, M2, M3, M7). 
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To determine the cellular basis for low GM-CSF production, pooled 

TRAMPC2/TR/GM-CSF cells (clones 3, 5, 6) were grown under limiting dilution 

conditions. We identified clones producing GM-CSF by ELISA and then 

performed an ELISPOT assay (R&D, Minneapolis, MN) to estimate the number 

of cells producing GM-CSF. This study revealed that few cells produced GM-

CSF in the absence of tet (Fig. 23, left panel). However <10% of 

TRAMPC2/TR/GM-CSF tumor cells secreted GM-CSF when induced in the 

presence of tet (right panel). Since these cells represent the progeny of a single 

cell, these data demonstrate that TRAMPC2/TR/GM-CSF tumor cells either lose 

or silence the transgene during clonal expansion. 
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Figure 23. Evidence that TRAMPC2/TR/GM-CSF tumor cells lose or silence the 
GM-CSF gene during clonal expansion. 
TRAMPC2/TR/GM-CSF cells were grown under limiting dilution conditions and 
clones producing SLC identified by ELISA. Cells producing this chemokine were 
expanded and then subsequently incubated overnight in the absence (left panel) 
or presence of tetracycline (right panel). The following day the percentage of 
cells producing GM-CSF was estimated by ELISPOT assay. Shown are 
individual wells from an ELISPOT plate containing 1000 input TRAMPC2/TR/GM-
CSF cells. 
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Growth characteristics of a TRAMPC2/TR/CD40L clone in vivo 

A TRAMPC2/TR/CD40L clone (from over 50 clones tested) that expressed 

CD40L after induction with tetracycline (Fig. 17) was tested for in vivo growth. To 

assess whether this cell line was still tumorigenic in vivo and maintained 

inducible CD40L expression, five mice were implanted ectopically with 

TRAMPC2/TR/CD40L cells. None of these mice developed ectopic 

(subcutaneous) tumors three months post implantation. 

Next we tested whether TRAMPC2/TR/CD40L cells would grow in the 

prostate gland. We orthotopically injected five mice with TRAMPC2/TR/CD40L 

tumor cells and monitored these mice for tumor growth. None of these mice grew 

tumors during 3 months that they were monitored. This can be due to the 

leakiness and therefore the background CD40L expression of these cell lines. 

Growth characteristics of SLC-transfected TRAMPC2 tumor cells injected 

subcutaneously 

In order to develop a TRAMPC2/TR/SLC cell line that grows in vivo and 

maintains the regulated expression of SLC 20 mice were injected 

subcutaneously with 5 different TRAMPC2/TR/SLC lines (table 2; cell lines #4, 5, 

8, 12 and 31). Seventeen of 20 mice grew tumors (table 2). These tumors were 

removed, diced into small pieces and cultured in TRAMP media without 

antibiotics. 180 clonal cell lines were isolated and tested by ELISAfor inducible 
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expression of SLC individually as explained in Material and Methods section. 

Five outgrowth cell lines (A18, B13 and B3, M9 and R3) from subcutaneous 

tumors had low induction level of SLC after exposure to tetracycline (Fig. 24) 

relative to the parental cell line. For example A18 (Fig. 24) had about 220pg/ml 

of SLC expression with no background expression. TRAMPC2/TR/SLC 4 

parental cell line that A18 was generated from had an average induction level of 

3200 pg/ml with background level below 400 pg/ml (Fig. 15). 
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Table 2. 5 cell lines developed from 20 TRAMPC2/TR/SLC subcutaneous tumors 
that have small SLC induction after passage in vivo. 

Mice 

A-F 

G-H 

l-L 

M-P 

Q-T 

Total 

Clone 

4 

5 

8 

12 

31 

Tumor incidence 

5/6 

2/2 

3/4 

1/4 

4/4 

17/20 

# of outgrowth 
cell lines * 

63 

25 

26 

15 

51 

180 

# of inducible cell 
lines t 

3(A18,B3,B13) 

0 

0 

1 (M9) 

1(R3) 

5 

Mice A through T were injected with different TRAMPC2/TR/SLC clones as 
indicated in the second column. Tumors were removed, diced and cultured in 
TRAMP media without antibiotics (zeocin and blasticidine). Different numbers of 
outgrowth cell lines were generated from each tumor (*). All these cell lines were 
tested for tet-inducible expression of SLC. 1X105 cells from each cell line were 
seeded in duplicates (with or without 2ug/ml tetracycline) and the next day the 
supematants were tested by ELISA. Only five cell lines were identified with very 
low induction levels ( t) . 
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Figure 24. In vivo growth of TRAMPC2/TR/SLC clones is associated with 
reduced induction of SLC. 
Different TRAMPC2/TR/SLC clones were injected subcutaneously in mice. Some 
mice grew tumors that were removed, diced and cultured in TRAMP media 
without selection in antibiotics. The developed cell lines were then tested for 
regulated expression of SLC. Only cell lines with regulated SLC induction are 
presented. 



TRAMPC2/TR/SLC outgrowths shown in Figure 20 that had some SLC 

induction were expanded and subjected into antibiotic selection for about three 

weeks. All the cells of the first three cell lines (A18, B3 and B13) died. The other 

two lines (M9 and R3) were expanded and tested again for SLC induction (Fig. 

25). 
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Figure 25. Antibiotics selection increased SLC induction level of 
TRAMPC2/TR/SLC outgrowth cell lines. 
Different TRAMPC2/TR/SLC clones were injected subcutaneously in mice. Some 
mice grew tumors that were removed, diced and cultured in TRAMP media 
without selection in antibiotics. The developed cell lines were then tested for 
regulated expression of SLC and had low level of SLC induction compared to the 
parental cell line. These cell lines then were selected in antibiotics (zeocin and 
blasticidine). All the cells from three of these cell lines died during the selection 
process. R3 and M9 outgrowths were tested again for inducible SLC expression 
after they were expanded in the selection media. These two cell lines showed 
improved SLC induction after they were expanded in the presence of antibiotics. 



Even after selection in antibiotics, SLC induction levels of 

TRAMPC2/TR/SLC lines was much lower than the parental cell lines that were 

injected into the mice (Fig. 25, R3) or they had much higher background (Fig 25, 

M9). For example, the parental cell line of R3 had induction levels between 1800 

and 3500pg/ml (Fig. 15, clone #4), whereas, R3 produced 300pg/ml SLC after 

selection in antibiotics (Fig. 25). Similarly, the parental cell line from which the 

M9 clone was isolated constitutively produced low levels of SLC (10-50pg/ml, 

data not shown) and approximately 2000 pg/ml SLC in the presence of the 

inducer. In contrast, M9 showed high background level of SLC expression (Fig. 

25, 700pg/ml) even after antibiotics selection. Although these cell lines (R3 and 

M9) maintained SLC expression after in vivo passage they did not survive 

antibiotics selection for more than 5 weeks. It seems that these cell lines were 

not genetically stable and as they were passaged in vitro they lost the antibiotic 

resistant gene or turn it off and therefore did not survive the antibiotic selection. 

Growth characteristics of TRAMPC2/TR/SLC tumor cells following 

orthotopic implantation into the mouse prostate gland 

The observation that most clonal outgrowths did not secrete SLC may 

indicate that cells secreting this chemokine were eliminated by an immunological 

mechanism(s). We therefore tested the notion that tumor growth in the 

"immunologically privileged" prostate gland may allow for the growth of cells with 

inducible expression of SLC. To that end, TRAMPC2/TR/SLC tumor cells (clone 
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#4, Fig. 18) were implanted into the prostate gland of nine mice. One mouse 

died without evidence of a palpable prostate tumor. Six mice developed palpable 

tumors approximately 2 months after implantation. These six tumors were 

excised and clonal outgrowths were obtained in TRAMP media without selection 

antibiotics. Outgrowths from two tumors were no longer tet-inducible and were 

not further studied (data not shown). Seventy clonal outgrowths were obtained 

from the remaining four tumors of which ten were inducible for SLC expression 

(Fig. 26). Clonal outgrowths derived from mouse 1 (M1) generally had low 

constitutive SLC levels but relatively weak induction for SLC. The remaining 

outgrowths demonstrated higher tet-induced SLC secretion but were "leaky" 

(high constitutive levels). 
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Figure 26. Tet-induced regulation of SLC in TRAMP/TR/SLC tumor cells 
following orthotopic implantation and growth. 
Syngeneic mice were implanted orthotopically with TRAMP/TR/SLC tumor cells 
(5 x 105). After several months following implantation, palpable tumors were 
excised, diced and explants cultured in vitro. Clonal outgrowths were then 
isolated, expanded and tested for tet-induced secretion of SLC by ELISA. Four 
tumors were evaluated from individual mice (M1-4). 
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Impact of antibiotic selection on tet-induced production of SLC 

Because the clonal outgrowths from intraprostatic tumors were isolated 

and grown in the absence of selection media, the relatively modest of SLC 

production or high background may indicate that TRAMPC2/TR/SLC tumor cells 

lost or silenced the SLC or the repressor gene during in vivo growth. To study 

whether the SLC gene was lost and to enrich for tumor cells with stable tet-

inducible expression of SLC, clonal outgrowths from mouse 1 (M 1.1-1.19) were 

pooled to generate TRAMPC2/TR/SLC-L1. The remaining lines were also 

pooled to produce TRAMPC2/TR/SLC-L2. Both transfected populations were 

then subjected to antibiotic selection. Figure 27 demonstrates that growth in 

selection media enhanced SLC production by TRAMPC2/TR/SLC-L1 cells (Line 

1) approximately 5-fold without increasing constitutive SLC levels. Although 

TRAMPC2/TR/SLC-L2 (Line 2) cells had higher background expression relative 

to Line 1, tetracycline induced much higher levels of SLC production. These data 

indicate that both these lines have the capacity to grow both in vitro and in vivo in 

an orthotopic location. Therefore these cell lines that maintain stable and tet-

inducible expression of SLC will be used for in vivo studies to investigate the 

effect of expression of SLC in TRAMP TME on tumor growth, survival and 

metastasis. 
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Figure 27. Enhanced tet-induced expression following intraprostatic outgrowth 
TRAMPC2/TR/SLC lines following antibiotic selection. 
TRAMPC2/TR/SLC lines (L1 and L2) were expanded in vitro in the presence of 
zeocin and blasticidin. Samples from antibiotic resistant lines were then 
incubated in the absence (no tet) or presence (+tet) of tetracycline. The following 
day supematants were evaluated for SLC levels by ELISA. 
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Impact of SLC production on the establishment of orthotopic and 

metastatic prostate tumors 

TRAMPC2/TR/SLC clones (L1 and L2) displayed high levels of tet-

inducible expression of SLC and had demonstrated the ability to grow in vivo. 

We therefore wanted to test the extent to which SLC expression in the TME 

influences tumor growth and metastatic disease. To that end, we implanted 

TRAMPC2/TR/SLC-L2 orthotopically for the second time into a total of 18 

animals in two separate experiments (8 mice in experiment 1 and 10 mice in 

experiment 2, Fig. 28). In each experiment the mice were divided into two groups 

and one group were given doxycycline (Dox), a more stable derivative of 

tetracycline, in their drinking water one day after implantation. All the mice 

(control and treated) were sacrificed when the mice in the control group had 

ruffled fur, hunched up back and therefore were considered sick. The tumor 

weight and volumes were measured to determine if expression of SLC in the 

prostate TME alters these parameters. One of the mice given Dox in the first 

experiment and two from the control group in the second experiment died shortly 

after tumor implantation and therefore were excluded from this analysis. Tumors 

grew in all mice irrespective of whether they received Dox in their drinking water. 

However, tumors excised from mice that received Dox in their drinking water 

were smaller in size and weighed less than TRAMPC2/TR/SLC-L2 tumors 

removed from control mice (Fig. 29). Therefore expression of SLC in the TRAMP 

TME inhibited tumor growth and treated mice lived longer. 
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Figure 28. Schematic presentation of the in vivo experiments performed using 
TRAMPC2fl"R/SLC-L2. 
TRAMPC2/TR/SLC-L2 cells were injected into 18 mice in two independent 
experiments. 8 mice in experiment 1 and 10 mice in experiment 2 were divided 
into two groups and one cohort in each experiment received doxycycline in their 
drinking water. Mice in both experiments were sacrificed when the control group 
mice were sick. In experiment 1, tumor weights and volumes were measured, 
TILs of treated and control groups were phenotyped and SLC expression by 
tumor outgrowth cell lines was determined. In experiment 2, tumor weights and 
volumes were determined and metastasis to lymph nodes, lungs and pancreas 
was studied. 
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Figure 29. Expression of SLC in the prostate tumor microenvironment inhibits 
tumor growth. 
Mice (total of 18, experiment 1 and 2) were given an orthotopic injection of 5x105 

TRAMPC2/TR/SLC-L2 cells. One cohort was given doxycycline in their drinking 
water after surgery and one group served as control. One mouse from 
doxycycline treated group and two from control group died a week after surgery 
without any tumor. Tumor growth was monitored by palpation and approximately 
two months after implantation, tumors were excised, weighed (panel A) and 
tumor volumes (Panel B) were measured. 
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A small piece of each tumor from experiment 1 was diced, cultured in 

TRAMP media and the derived outgrowth cell lines selected in antibiotics (zeocin 

and blasticidine) were tested for tetracycline-induced SLC secretion. Figure 30 

illustrates that even the best clonal derivatives had very modest induction of SLC 

(<10% of parental line 2, see Fig. 27) following exposure to tetracycline. 

TRAMPC2/TR/SLC-L2 cells that were injected orthotopically into mice had about 

1200pg/ml of induced SLC expression (Fig. 27) with no background expression. 

However, after in vivo passage the tetracycline-induced level of SLC expression 

of M5.4 line that had the highest inducible level of expression among the 

generated cell lines was only 450pg/ml (Fig. 30). All these cell lines eventually 

lost inducible expression after a few in vitro passages. This experiment showed 

that even after two in vivo passages the generated cell lines were genetically 

unstable and lost the regulated expression of SLC. 
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Figure 30. Representative tet-inducible secretion of SLC in TRAMPC2/TR/SLC 
clonal lines derived from tumors exposed to doxycycline in vivo. 
TRAMPC2/TR/SLC-L2 cells were implanted orthotopically into 8 mice 
(experiment 1). One cohort received doxycycline in their drinking water after 
surgery. Two months later, tumors were excised, diced and cultured in tissue 
culture media containing antibiotics. An aliquot (106 cells) of each clonal 
outgrowth was incubated in the absence or presence of tet (2ug/ml) overnight 
and the following day evaluated for SLC expression by ELISA. 
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Characterization of the cellular infiltrate in tumors that expressed SLC 

The data above indicated that expression of SLC inhibited primary 

prostate tumor growth. This may have resulted from changes in the inflammatory 

response as a result of expression of SLC in the TME because SLC is an 

attractant primarily for DCs and T cells. Therefore we also pooled cells from the 

spleen and tumors from both untreated and doxycycline treated groups of mice 

(+Tet) in experiment 1 and stained them with the indicated monoclonal antibodies 

(mAbs) (Fig. 31). Viable cells were gated and then phenotyped by multi

parameter flow cytometry. The panel of mAbs used for this study detected the 

presence of DCs (CD11c), macrophages (F4/80), B cells (B220), T cells (CD3e) 

and granulocytes (Gr-1). Spleens from normal or tumor bearing mice were used 

as controls. Since SLC is known to attract DCs and T cells, we expected to 

detect higher percentages of these cells in tumors from mice treated with 

doxycycline. However, we did not detect any major difference between the 

doxycycline treated and untreated groups (Fig. 31, panel A). There was an 

increase in the number of B cells (B220+) in the tumor of treated mice, but the 

role played by B cells in cancer biology is complex and somewhat controversial. 

Previous studies using genetically engineered mice suggest that B cells may be 

immunosuppressive and inhibit tumor rejection. However, the effects of B-cell 

depletion employing an antibody in mice bearing solid tumors has not been 

tested owing to difficulties in making an effective antimouse CD20 antibody 

(187). We also analyzed DCs for the expression of MHC class I and II antigens 
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and the co-stimulatory molecules CD80 and CD86 (Fig. 31, panel B). These 

molecules are indicative of DC maturation and are important for optimal antigen 

presenting function. Expression of CD40 on DCs is an important receptor for 

maturation signals delivered by CD40-ligand usually expressed on activated 

CD4+ T cells. However, doxycycline treatment did not influence the maturational 

state of intratumoral DCs at least based on the cell surface expression of these 

molecules (panel B). 
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Figure 31. Characterization of host cells infiltrating TRAMPC2/TR/SLC tumors 
treated with doxycycline. 
TRAMPC2/TR/SLC-L2 was injected into the prostate of 8 mice (experiment 1). 
On the day after the surgery, half the mice received water that contained 
doxycycline (20 ug/ml). Tumors were removed 60 days post implantation and 
single cell suspensions from each group (treated or not treated) were pooled for 
flow cytometric analysis. Tumor bearing spleens (TBS) and normal spleen (NS) 
were used as control. Panel A. Phenotype of tumor infiltrating leukocytes (TILs). 
Panel B. A CD11c+ gate was defined and expression of the indicated molecules 
was determined on CD11c+ cells. 



Calculating the absolute number of each cell type per spleen or tumor 

showed that doxycycline treatment did not have any affect on the number of any 

cell type in the spleen (Fig. 32A) other than B cells (B220+ cells) compared to 

spleen of untreated mice. The number of B cells was lower in the spleen of 

doxycycline treated mice (1.3x107 cells/spleen) than in untreated mice (1.9x107 

cells/spleen). As shown in Figure 32B there was actually more B cells in the 

tumor of treated mice (4x105 cells/tumor) than untreated mice (1x105 

cells/tumor). The number of all other cell types was actually lower in the tumor of 

treated mice than untreated mice, particularly T cells and Gr-1 cells. We also 

compared the number of DCs from treated and untreated mice that express IAb, 

B7.1, B7.2 and CD40 molecules (Fig. 32 C and D). The number of splenic DCs 

that expressed IAb, B7.2, CD40 was slightly higher when mice were treated with 

doxycycline. In the tumor the number of CD11c+ B7.1+cells was higher in the 

treated mice than untreated mice (panel D). Although treated mice had smaller 

tumors there was not any major difference between the number or the 

percentage of the cells infiltrating tumors. This can be due to the fact that these 

mice were sacrificed when they had progressed disease and although treatment 

slowed down the progression of the disease it did not prevent it. It is possible that 

major differences in the TILs could be detected at earlier time points of the tumor 

progression. 
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Figure 32. Characterization of host cells infiltrating TRAMPC2/TR/SLC tumors 
treated with doxycycline. 
TRAMPC2/TR/SLC-L2 was injected into the prostate of 8 mice (experiment 1). 
On the day after the surgery, half the mice received water that contained Dox (20 
ug/ml). Tumors were removed 60 days post implantation and single cell 
suspensions from each group (treated or not treated) were pooled for flow 
cytometric analysis. Tumor bearing spleens (TBS) and normal spleen (NS) were 
used as control. Panels A and B: Phenotypic analysis of spleen cells from normal 
mice and mice treated or not with Dox (A) and of TRAMPC2/TR/SLC-L2 TILs of 
mice treated or not with Dox (B). Panels C and D: A CD11c+ gate was defined 
and expression of the indicated molecules was determined on DCs from normal 
spleen and spleens of mice treated or not with Dox (C) and DCs infiltrating 
TRAMP/TR/SLC-L2 tumor treated or not with Dox (D). 



Functional assessment of the promoter (CMV) of the exogenous SLC gene 

It is apparent from the data presented above that TRAMPC2/TR/SLC 

tumor cells displayed very weak induction of SLC following ectopic and orthotopic 

implantation. Two possibilities were considered: loss of the transgene or 

alternatively, silencing of the promoter. We therefore next tested whether the 

poor induction with tetracycline reflected loss of the transgene. DNA was 

extracted from the outgrowth cell lines derived from TRAMPC2/TR/SLC line 2 

tumors and PCR was performed using specific primers to amplify SLC transgene. 

It is apparent from Figure 33 panel A that outgrowths obtained from orthotopic 

TRAMPC2/TR/SLC tumors still contained the SLC transgene. The absence of a 

product in the control mouse DNA confirmed that the primers did not amplify 

endogenous SLC (lane 9). To test the possibility that the promoter was silenced 

by methylation, we evaluated the methylation pattern of the CMV promoter. To 

perform this assay, DNA isolated from tumor pieces or outgrowth cell lines were 

bisulfite treated. PCR reactions were performed using primers complementary to 

a region of CMV promoter not containing methylation sites (oligos 1) or a pair of 

primers complementary to a region of CMV promoter which contains methylation 

sites (oligos 2). If the promoter is not methylated, a PCR product forms with both 

primers, whereas, a single product is only detected with oligos 1 if the promoter 

is methylated (188). Figure 33B demonstrates that when the pcDNA4/TO/SLC 

plasmid was tested following bisulfite conversion, PCR reactions with both 

primers produced a product indicating that the original plasmid DNA was not 
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methylated (TO/SLC, oligos 1 and 2). In contrast, when DNA was extracted from 

two excised TRAMPC2/SLC-L2 tumors (prior to in vitro expansion), promoters 

appeared to be methylated because there were no signals when oligos 2 were 

used, whereas a PCR product was formed with oligos 1 (tumor M1 and M2, 

oligos 1 snd 2). When a clonal outgrowth derived from one of these tumors (line 

M1, oligos 1 and 2) was tested, PCR products formed with both primers 

suggesting that the section of tumor excised for clonal expansion had a 

functional promoter (not methylated). These data indicate that during tumor 

growth in the prostate gland, the promoter is variably methylated. Thus, in some 

sections of the tumor, the promoter may still be functional. This may explain why 

we detected some low-grade induction of SLC in some clonal outgrowth in vitro 

of explants of TRAMPC2/TR/SLC tumor (Fig. 30). We did not investigate the 

expression of repressor protein but the repressor protein is also expressed from 

a CMV promoter and therefore in the cell lines that with methylated promoter the 

repressor gene CMV promoter was also silenced. 
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Figure 33. Detection of SLC gene in TRAMPC2/TR/SLC tumors and methylation 
status of CMV promoter following growth in vivo. 
A: DNA extracted from outgrowth cell lines derived from TRAMPC2/TR/SLC line 
2 tumors were tested for the presence of transfected SLC gene by PCR reactions 
using primers specific for the transfected SLC gene. PcDNA4/TO/SLC plasmid 
used for transfection was included as a positive control and mouse DNA was 
used as negative control. Lanes: 1-7 represent PCR products obtained when 
DNA from two TRAMPC2/TR/SLC Line 2 tumors were amplified by PCR. Lanes 
8 and 9 represent the PCR products obtained when pcDNA4/TO/SLC plasmid 9 
and mouse DNA were used, respectively. B: DNA extracted from 
TRAMPC2/TR/SLC line 2 tumors (M1 and M2) and a cell line derived from tumor 
M1 were tested for methylation status of SLC gene promoter. PcDNA4/TO/SLC 
plasmid used for transfection was used as negative control. Lane 1- tumor M1, 
oligo 1; lane 2- tumor M1, oligo 2; lane 3- M1.2 line, oligo 1; lane 4- M1.2 line, 
oligo 2; lane 5- pcDNA4/TO/SLC plasmid, oligo 1; lane 6- pcDNA4/TO/SLC 
plasmid, oligo 2; lane 7- tumor M2, oligo 1; lane 8- tumor M2, oligo 2. 
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Expression of SLC in the TRAMPC2 TME prolonged survival of tumor 

bearing mice 

In order to establish that SLC expression delays tumor growth in a 

different experiment, 8 mice were injected with TRAMPC2/TR/SLC-L2 cells 

orthotopically and randomly divided into two groups. One group received 

doxycycline in their drinking water starting the day after the surgery. The mice 

were sacrificed when they showed signs of morbidity (they were not sacrificed all 

on the same day). Although tumors of doxycycline treated mice were bigger in 

size and weighed more when the mice were sacrificed, it appeared that SLC 

prolonged the survival of treated mice. As shown in Figure 34 the non-treated 

mice all died by day 32 after implantation, however, doxycycline treated mice 

lived up to 50 days. Therefore, expression of SLC in TRAMPC2 TME prolongs 

the survival of tumor bearing mice. 
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Figure 34. Inducible expression of SLC in the tumor microenvironment enhances 
survival in mice bearing orthotopic prostate tumors. 
8 Mice were transplanted orthotopically with TRAMPC2/TR/SLC-L2 cells. 4 mice 
were given Dox in their drinking water the day after implantation. Tumor growth 
was monitored by palpation and mice were euthanized when tumors were 
palpable and mice showed signs of morbidity. Panel A: The average of tumor 
weights of the tumors from mice treated or not with doxycycline. Panel B: 
Survival curve of TRAMPC2/TR/SLC-L2 tumor bearing mice treated or not with 
Dox. 
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We also evaluated the metastasis to different organs like lymph nodes, 

lungs, pancreas and bone marrow (one mouse from the untreated group was 

found dead before we could access metatstatic disease). All draining cervical 

lymph nodes from untreated mice had metastatsis, whereas, only 2 lymph nodes 

from treated mice yielded tumor cell outgrowth. 50% (2/4) of the untreated control 

mice also had lung metastasis with one animal with both lung and pancreatic 

metastases. Only 1/4 of the treated mice had metastasis to lung and none of the 

treated mice had metastatis to the pancreas (table 3). 
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Table 3. Frequency of lymph node, lung and pancreas metastasis in 
TRAMPC2/TR/SLC-L2 orthotopic tumor bearing mice treated with doxycycline. 

metastasis location 

Lymph node 

Lung 

Pancreas 

No. of mice with metastasis/group 

Carrier treated 

3/3 

2/3 

1/3 

Dox treated 

2/4 

1/4 

0/4 

8 Mice were transplanted orthotopically with TRAMPC2/TR/SLC-L2 cells. 4 mice 
were given doxycycline in their drinking water the day after implantation. Tumor 
growth was monitored by palpation and mice were euthanized when tumors were 
palpable and mice showed signs of morbidity. Lymph nodes, lungs and 
pancreases were removed, diced and cultured as described previously. Organs 
with tumor metastases grew TRAMPC2 cells out of the organ piece and were 
harvested as a cell line. Demonstrating that these cell lines contained aneuploid 
DNA validated that the outgrowths represented tumor cells. 



Next we wanted to determine whether SLC expression could induce tumor 

regression after the tumor became palpable. Therefore we injected 9 mice with 

TRAMPC2/TR/SLC-L2 orthotopically and divided them into three groups. One 

group received doxycycline from day 1, the second group from day 20 (after one 

of the mice had a palpable tumor) and the third group served as control. The 

survival curve of these mice is presented in Figure 35 panel A. One mouse from 

the control group did not grow tumor at all and was excluded from this graph. As 

shown in this Figure, control mice died by day 50. However, mice from 

doxycycline treated (both day 1 and day 20) lived only 4 days longer. Although 

the average tumor weight of the mice treated with doxycycline from day 1 was 

lower than both control group and mice treated with doxycycine from day 20, this 

difference was not significant (Fig. 35, panel B). 
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Figure 35. SLC does not inhibit growth of established TRAMPC2 tumor. 
9 mice were injected with TRAMPC2/TR/SLC-L2 and divided in 3 groups. One 
group (2 mice) received doxycycline in their drinking water 1 day after surgery 
and the second group (4 mice) 20 days after surgery when one mouse in the 
group had a palpable tumor. The third group (3 mice) did not receive doxycycline 
and served as control (one mouse from this group did not grow a tumor). Panel 
A: The survival curve of TRAMPC2/TR/SLC-L2 tumor bearing mice treated or not 
with doxycycline. Panel B: The average tumor weight of TRAMPC2/TR/SLC-L2 
tumor bearing mice treated or not with doxycycline. 
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CHAPTER V 

DISCUSSION 

Maturation of dendritic cells is inhibited by TRAMPC2 cells but 

not Gr-1+ cells 

Dendritic cells play a major role in orchestrating immune responses. 

Immature DC are characterized by their ability to capture, process and load 

antigens to MHC class I- or class II- molecules (165). Following antigen uptake, 

DCs migrate to the secondary lymphoid organs where they mature, express 

markers like B7.1, B7.2 and CD40 molecules and become APCs that are able to 

select and activate naive antigen-specific T cells (183). The presence of DCs has 

been reported in numerous tumors (137). Despite the presence of such tumor-

infiltrating DCs, tumor cell outgrowth often occurs indicating that immunity against 

tumor cells is either improperly induced or evaded by the tumor. This raises 

questions regarding the status of TIDCs. Therefore we decided to use TRAMP 

transplantable murine prostate model to characterize DCs infiltrating these 

tumors. Dendritic cells infiltrating TRAMP tumors had lower expression of MHCII, 

B7.2 and CD40 molecules compared to splenic DCs. Furthermore CCR7, CD8 

and PDL2 molecules were down-regulated in TIDCs compared to normal spleen 

DCs. Therefore, TRAMP tumor infiltrating DCs are considered phenotypically 

immature. Although a small percentage of TRAMP TIDCs express MHCII and co-

stimulatory molecules, it may not be sufficient for T cell activation. Determining 

their level of functional activity requires isolation and purification of these cells. In 
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this study we tried different yet common methods to purify TIDCs. These 

methods included selective adherence, Nycodenz gradient centrifugation, 

discontinuous Percoll gradient centrifugation and finally anti-CD11c magnetic 

beads. However, all of these methods failed to enrich TRAMP TIDCs. 

Enrichment of TIDCs by percoll gradient centrifugation showed that splenic DCs 

were denser than TIDCs as they appeared in the interface of 70 and 40% percoll, 

whereas, TIDCs were localized primarily at he 20-40% interface (Fig. 5). 

Therefore, TRAMPC2 TIDCs do not only differ from splenic DCs in the 

expression of cell surface molecules but also they behave differently as shown 

by performing discontinuous percoll gradient centrifugation. Tumor cells are 

known to activate granulocytes by producing different cytokine such as TNF-a 

and IL-8. These cytokines are known to be elevated in the serum of cancer 

patients (189) and stimulate the oxidative burst (190). Although it has not been 

reported it is highly probable that other cells of the immune system could be 

equally affected by the same oxidative stress induced by tumor cells. 

Numerous findings indicate that tumor-derived factors promote the 

immunosuppressive phenotype of DCs. Indeed, conditioned media from tumor 

cells lines can inhibit the in vitro differentiation of DCs from their precursors 

(170). After trying different techniques to enrich TIDCs we decided to determine 

the cell type responsible for immature phenotype of DCs in the TRAMP TME. 

When immature DCs were cultured alone the expression of MHCII and co-

stimulatory and CD40 molecules were up-regulated compared to fresh DCs (Fig. 

6). However, the presence of TRAMPC2 cells in the culture inhibited the 
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expression of these molecules. We also showed that TRAMPC2 cells inhibited 

DC maturation of DCs through direct contact. When contact of DCs with 

TRAMPC2 cells was prevented using transwells, TRAMPC2 cells failed to inhibit 

the expression of IAb, B7.1 and B7.2 (Fig. 7). Although there are no reports about 

molecules involved in the prevention of DC maturation by tumor cells through 

direct contact we reported that TRAMPC2 cells inhibit up-regulation of class II 

antigens and co-stimulatory molecules by immature DCs through direct contact. 

Tumor cells have developed strategies to down-regulate immune responses. 

Previous studies have shown that tumor cells produce molecules that inhibit DC 

maturation. Some of these molecules include IL-10 (191, 192), vascular 

endothelial growth factor (170), PGE2 (192), and TGF-p (171). Furthermore, 

purified TIDCs were shown to be refractory to ex-wVo maturation stimuli because 

of autocrine production of IL-10 (137). This observation is consistent with their 

inability to induce appropriate allogeneic T cell activation (100). Taken together, 

our results and the above reports suggest that the TME is immunosuppressive 

for DC and has the ability to selectively modulate TIDCs. 

We have previously shown that TRAMP tumors are infiltrated with 

immature myeloid cells (84) that are known to be immunosuppressive through 

different mechanisms (172). Immature myeloid cells (iMCs) are present in the 

bone marrow and spleen of healthy mice and differentiate into mature myeloid 

cells including granulocytes, macrophages and DCs in the presence of GM-CSF 

in vitro or after adoptive transfer to healthy, naive recipients in vivo (193). 

However, they accumulate in the spleen and, to some extent, in the lymph nodes 
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of mice bearing many different tumors (194,195). The functional activity of iMCs 

involves the inhibition of IFN-y production by CD8+ T cells both in vitro and in vivo 

in response to peptide epitopes presented by MHC class I molecules at the cell 

surface of iMCs (196). We (unpublished data) and others (197) found that 

oxidative stress, caused by the production of reactive oxygen species by iMCs, 

suppressed CD3£ expression by T cells. This effect was mediated by molecules 

such as hydrogen peroxide (198) that are involved in many signaling pathways 

and can also be responsible for immature phenotype of DCs in TME. Therefore 

we investigated the possibility of a contribution of myeloid cells to the immature 

phenotype in the TRAMP TME. Purified Gr-1+ granulocytes obtained from flt3-

ligand treated mice did not prevent maturation of DCs in vitro. But the 

combination of Gr-1+ and TRAMPC2 cells caused reduction in the expression of 

IAb and B7.1 molecules that was not greater than reduction induced by only 

TRAMPC2 cells. Thus, TRAMPC2 cells seemed to be the major cell type that 

prevented TIDCs maturation and this was mediated through direct contact. 

It has been reported by others that TIDCs in several transplantable and 

transgenic mouse tumor models had an immature phenotype and were refractory 

to activation with microbial or T cell-derived stimuli like LPS, IFN-y, and anti-

CD40 agonist antibody (137,199). We showed that exposure to TRAMPC2 did 

not prevent immature DCs undergoing maturation when stimulated with LPS in 

vitro. Even though other factors may be involved in TRAMP TME, this indicates 

that TIDCs did not lose their capacity to mature when stimulated with a potent 

TLR4 ligand. 
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As discussed previously GM-CSF, SLC and CD40L can induce maturation 

of DCs. SLC secreted from TRAMPC2 cells partially reversed the down-

regulation of maturation markers induced by TRAMPC2 cells, but the level of 

maturation markers expression was still lower than the level of expression of 

these molecules when DCs were cultured alone. GM-CSF and CD40L were more 

potent in induction of DC maturation when secreted from TRAMPC2 cells as they 

completely reversed the down-regulation of maturation markers induced by 

TRAMPC2 cells. However, the effect of GM-CSF and CD40L did not exceed the 

maturation level of DCs cultured alone. Although this maturation level seems to 

be low compared to LPS induced maturation, this may be physiologically relevant 

in vivo. It has been shown ratio of DCs:T cells required to induce T cells 

proliferation was 1:40 using tumor RNA-pulsed DCs in a pancreatic cancer model 

(200). Therefore, even a low level of DCs maturation may be sufficient to induce 

an anti-tumor immune response. 

Gene silencing through promoter methylation in the loss of 

transgene expression in TRAMPC2 transfected cells 

Regulated expression of specific cytokines and chemokines was a crucial 

component of designing these studies that made our model more clinically 

relevant. The repressor protein of tetracycline regulated expression system was 

not detectable after TRAM PC 1P3 cells that were transfected with the repressor 

protein were passed in vitro. Furthermore, when TRAMPC1P3 cells were 

transfected with both TR and the TO/SLC expression vectors, the inducible level 
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of expression was very low. These data led us to try TRAMPC2 cells that turned 

out to have higher transfection efficiency. Furthermore, TRAMPC2 cells 

transfected with TR and TO/SLC vectors had higher level of inducible 

expression. Other studies have also reported the difficulties with specific cell 

lines to generate stable inducible clones (201). 

Although TRAMPC2 cells produced more SLC when induced with 

tetracycline compared to TRAMPC1P3 cells, the amount of protein produced 

varied from one passage to another and some lost the expression of the 

transgene altogether. Chromosome instability that is a common feature of human 

cancer and results in aneuploidy could be one explanation for different amount of 

protein produced by transfected TRAMPC2 cells (202). Another explanation that 

was addressed in this study was gene silencing through promoter methylation 

(188). After transfected TRAMPC2/TR/SLC cells with low background and high 

inducible expression were passaged in vivo, some of the cell lines developed 

from tumors did not express SLC at all although they possessed the transgene 

as determined by PCR. Methylation of the CMV promoter was detected in these 

cell lines as well as in some of the tumor pieces. This assay could not detect 

methylation of CMV promoter if there were mixed population of cells with 

methylated and un-methylated promoter. Therefore it was not possible to detect 

methylation of promoter in cell lines that had low expression of SLC. 

Furthermore, the repressor protein is also expressed under the control of CMV 

promoter in the T-Rex system. Therefore high background expression of SLC in 

some of the cell lines could be due to methylation and silencing of the repressor 
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protein promoter. In the cell lines with no SLC expression where we detected 

CMV promoter methylation the repressor protein promoter was also methylated 

since this assay could not detect methylation of CMV promoter if there were 

mixed population of cells with methylated and un-methylated promoter. It has 

been demonstrated by others that the CMV promoter, a promoter most widely 

used fortransfection, may be silenced in mouse (203) and human (204) cells 

after transfection. 

Regulated expression of GM-CSF by TRAMPC2 cells in vivo and 

in vitro 

Cytokine-modified cell-based vaccines are currently the major form of 

cancer vaccine tested clinically (205). Among the different cytokine genes used 

to modify tumor immunogenicity, GM-CSF is the most potent stimulator of 

systemic anti-tumor immunity when transduced into autologous tumors (55). The 

potency of GM-CSF in modulating an anti-tumor effect has been attributed to its 

role as an important growth and differentiation factor for DCs, at the vaccination 

site (59, 76). This made GM-CSF a good candidate to be tested for 

immunotherapy of TRAMPC2 prostate cancer model since TRAMPC2 tumors are 

infiltrated with a small number of DCs that are phenotypically immature. 

Therefore GM-CSF could both expand the number of DCs and induce their 

maturation. Furthermore, it has been shown that the introduction of GM-CSF into 

tumor cells produced the most active vaccine compared to cytokines such as IL-2 

and IFN-y or the co-stimulatory molecules like B7.1 that provides signal for T cell 
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activation in the absence of APCs (206, 207). Using different murine tumor 

models including B16 melanoma, CT-26 colon carcinoma, CMS-5 fibrosarcoma, 

RENCA renal cell carcinoma and WP-4 fibrosarcoma, Dranoff et al, showed that 

irradiated GM-CSF expressing tumor cells were more effective than irradiated 

cells alone in eliciting systemic immunity (55). TRAMPC2 cells transfected with 

GM-CSF could be induced to express GM-CSF in the presence of tetracycline. 

However the amount of GM-CSF produced by these cell lines never exceeded 

500pg/ml/million cells that was low compared to levels of SLC produced by 

TRAMPC2/TR/SLC cells that produced 5000pg/ml/million cells. ELISPOT assays 

on cloned TRAMPC2/TR/GM-CSF cells revealed that <10% of the cells produced 

GM-CSF. This indicates that most of the cells lost inducible expression of GM-

CSF but retained antibiotic resistant genes. Furthermore, the cell lines that were 

derived from TRAMPC2/TR/GM-CSF (clone 6) prostate tumors had very low or 

no expression of GM-CSF and eventually died when we tried to select the 

antibiotic resistant cells to expand for repeated in vivo growth. This behavior may 

reflect loss of the transgene or silencing of the promoter as discussed before. We 

could not establish a TRAMPC2/TR/GM-CSF that maintained regulated 

expression of GM-CSF after in vivo passage. Therefore, we decided to use 

TRAMPC2/TR/GM-CSF (clone 6) and study the effect of GM-CSF expression in 

the TME on tumor growth and metastasis. However, this cell line failed to grow in 

vivo although it grew before that be due to the fact that these cell lines are 

genetically very unstable and they change dramatically after in vitro or in vivo 

passages. 
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CD40L expressing TRAMPC2 cells were not tumorigenic in vivo 

CD40L is expressed mainly by activated CD4+ T lymphocytes in highly 

regulated manner. At any one time a very limited number of circulating T cells are 

positive for CD40L expression (208). To date, the physiologic role(s) of CD40 on 

T cells has not been characterized, nor have the mechanisms by which CD40 

affects T cell function been defined. However, after engagement of TCR with 

MHC-peptide complexes on the surface of APCs, T cells rapidly express CD40L. 

Then, CD40L binding to CD40 causes up-regulation of co-stimulatory/adhesion 

molecules [B7.1, B7.2, leukocyte function-associated molecule 3 (LFA-3) and 

intercellular adhesion molecule 1 (ICAM-1)] on the surface of DCs, which 

provides the second signal required to activate naive T cells, amplify the immune 

response and prevent anergy or tolerance induction (209). While CD40 itself 

cannot induce IL-2 production, it augments the CD3 signal and gives maximal 

stimulation together with CD3 and CD28 signals (210). 

We developed an inducible TRAMPC2 cell line that expressed CD40L with 

addition of tetracycline. To study the extent to which CD40L expression 

modulates tumor growth, TRAMPC2/TR/CD40L cells was implanted 

orthotopically into mice. However, after 3 months of observation, no tumors were 

detected in the prostate gland. This cell line had a low basal level of CD40L 

expression (11%). It is possible that this low background level of expression was 

sufficient to induce an immune response that caused the rejection of TRAMPC2 

tumor. Grossman etal. showed that murine neuroblastoma cells that expressed 
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CD40L grew slower than the parental cell line. They also showed that not all 

tumor cells needed to express CD40L to observe the growth inhibitory effect. In 

fact when only 1.4% of the injected cells were CD40L transfected the tumors 

were smaller than control (211). Expression of CD40L by tumor cells induced 

systemic immune response as the number of CD4+ and CD8+ T cells increased 

significantly in the spleen of CD40L treated mice compared to control (211). 

Therefore, limited background expression of CD40L by TRAMP tumor cells may 

have been sufficient to induce an anti-tumor immune response that prevented 

tumor growth. 

A recent study by Dzojic et al., showed that TRAMP-C2 cells that were 

transduced with an adenoviral vector encoding CD40L were not tumorigenic In 

vivo. They also showed that phenotype of CD40L expressing TRAMPC2 cells 

compared to the parental cells and they expressed more CD40. CD40L 

expression by TRAMPC2 cells reduced cell viability and induced apoptosis 

through activation of caspases. These effects were CD40-dependent since a 

neutralizing anti-CD40L antibody blocked the reduction in cell viability in a 

concentration-dependent manner (212). This could be another possible 

mechanism for the inability of TRAMPC2/TR/CD40L to grow in vivo although 

CD40 was not detectable on TRAMPC2 or TRAMPC2/TR/CD40L cell lines (data 

not shown). 

In summary our studies demonstrated that TRAMP tumor infiltrating DCs 

are not only phenotypically immature but also fractionate differently than splenic 

DCs. We also showed that SLC, GM-CSF and CD40L could reverse the 
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immunosuppressive effect of TRAMPC2 cells on DCs in vitro that made them 

good candidates for in vivo studies. Transplantation studies in vivo showed that 

SLC inhibited tumor growth and metastasis in an orthotopic TRAMP prostate 

cancer model. In vivo studies with GM-CSF or CD40L transfected TRAMPC2 

cells were not successful due to either the genetic instability of TRAMPC2 cells 

that resulted in unstable expression of chemokines or the "leakiness" of the 

system that induced a tumor rejection response. 

Expression of SLC in TME inhibits tumor growth and metastasis 

in the murine prostate cancer model 

Dendritic cells, the most potent APCs, play a critical role in the induction of 

anti-tumor response through a series of functions including antigen capture and 

processing, up-regulation of co-stimulatory signals, and finally antigen 

presentation and activation of T cells (165). Efficient transport of DCs into T-cell-

rich areas of lymphoid organs is primarily mediated by SLC (213) through CCR7 

receptor. Previous works demonstrated that the chemotactic activity of SLC for 

DCs and T cells could be used to generate anti-tumor immune responses (214-

216) and all of these reports indicated that the anti-tumor effect of SLC was 

mediated by enhancing the infiltration of mature DCs and CD8+ T cells to the 

tumor. These data also suggested that modification of the TME could lead to 

effective T-cell priming and the generation of functional anti-tumor effector cells 

without interaction of DCs and T cells in lymphoid organs. Consistent with these 

reports we found that the expression of SLC in TRAMPC2 TME inhibited tumor 
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growth (Fig. 29). The mice were sacrificed when they all had tumors and the 

majority of the non-treated mice were sick. This could be the reason that there 

was not any significant difference in the percentage or composition of TILs from 

treated and non-treated group, and the infiltrate could be different at earlier time 

points (Fig. 31 and 32). TRAMPC2/TR/SLC cell lines had high inducible 

expression of SLC at the time of injection and the mice received tetracycline in 

their drinking water right after the surgery. Therefore expression of SLC in the 

TME could change the composition of TILs as the tumor began to establish and 

grow. However, by the time we sacrificed the mice and studied the infiltrates the 

cells lost the expression of SLC due to promoter methylation and silencing. 

Theresore there was not any difference between TILs of treated and control 

groups. It has been shown that when mice with 5-day-old lung cancer were 

administered with SLC for two weeks, the frequency of CD4+ and CD8+ T cells 

and CD11c+ DCs that infiltrated both the tumor and lymph nodes increased 

(136). Although SLC seemed to inhibit tumor growth when its expression started 

soon after tumor injection, it did not delay tumor growth when expression was 

induced after the appearance of palpable tumors (Fig. 35). Ochsenbein et al. 

showed that sarcoma cells expressing a strong viral tumor antigen were capable 

of inducing a protective cytotoxic T cell response if transferred as a single cell 

suspension. However, if they were transplanted as small tumor pieces, they did 

not induce a CTL response and tumors readily grew (217). Therefore, it seems 

that tumors with established microenvironment prevent presentation of tumor 

antigens in the draining lymph nodes and consequently, tumor specific T cells 
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recombinant adeno-associated viruses vector (rAAV)-SLC into the established 

tumor also inhibited tumor growth, but the pre-transduced tumor cells, which 

expressed SLC from the time of administration, displayed a stronger anti-tumor 

response (218). 

In the next study we asked the question whether SLC expression in TME 

would increase survival and decrease metastasis of TRAMPC2/TR/SLC tumors. 

Therefore, mice were sacrificed when they became morbid at different time 

points. Treated mice lived longer and had less metastatic disease compared to 

non-treated mice. Consistent with our data, Liang et al showed that long-term 

and local expression of SLC in the TME mediated by rAAV-SLC caused delay in 

progression of ectopic Hepal-6 liver tumors and also reduced tumor weight in 

these mice compared to tumors that expressed GFP (218). They also showed 

that SLC generated systemic anti-tumor responses, accompanied by extensive 

infiltration of CD11c+ DCs and CD4+ and CD8+ T cells into the tumor site, 

especially activated CD3+ CD69+ T cells (218). As mentioned before SLC is 

expressed in high endothelial venules (HEVs), the main entrance of lymphocyte 

into peripheral lymph nodes and spleen (133) that may help organize T cells/DCs 

co-localization and interaction. Immunohistochemical staining of tumor sections 

showed that infiltration of T cells and DCs into the tumor formed a new lymphoid-

like tissue within the established tumor (218). Furthermore, expression of SLC in 

transgenic mice with islet p-cell-specific expression of SLC has been shown to 

trigger formation of lymphoid-like tissue in the pancreatic islets by recruiting the 
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lymphocytes and DCs to pancreatic islets (219). Thus, these results coincident 

with previous studies showed that local expression of SLC in the TME elicited 

anti-tumor effects by induction of lymphocyte infiltration as well as facilitating their 

interaction. 

Although SLC is important in recruiting DCs and T cells and is classified 

as a CC chemokine (binds to CCR7 receptor), murine SLC has been shown to 

bind to CXC chemokine receptor CXCR3 (220). This is a property that SLC 

shares with two other angiostatic chemokines, interferon-inducible protein 10 (IP-

10) and monokine induced by interferon-y (MIG) (221). Therefore anti-tumor 

activity of SLC can also be associated with its angiostatic activity through binding 

to CXCR3 receptor. Arenberg et al., showed that injection of SLC into the A549 

human lung tumors in the severe combined immunodeficiency (SCID) mice 

inhibited tumor growth and reduced metastasis when the number and size of 

metastatic loci was compared to control mice (222). 

Many tumors produce chemokines, which may explain the presence of 

tumor-associated leukocytes. These chemokines may assist in immuno-

surveillance and help to eliminate the tumor (223, 224). However, they may also 

promote tumor growth and invasion. Chemo-attracted host-derived inflammatory 

cells that infiltrate tumor tissues can create an environment that favors tumor 

progression. They promote tumor angiogenesis and tumor progression by 

producing angiogenic factors and matrix-degrading enzymes, respectively (198, 

225). Yang et al. demonstrated that tumors could use different mechanisms to 

promote tumor development and growth. They demonstrated that immature 
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granulocytes consist about 5-6% of the leukocytes infiltrating colorectal cancer 

(MC26) and Lewis lung carcinoma (3LL) tumors. The percentage of these cells 

also increased in tumor bearing spleen compared to normal spleen. Tumor 

growth was increased when tumor cells were co-injected with Gr-1+CD11b+ cells 

purified from the spleen of tumor bearing mice suggesting that these cells 

promoted tumor growth. Furthermore, increased tumor angiogenesis, vascular 

maturation, and decreased tumor cell apoptosis and tumor necrosis were 

observed in tumors co-injected with Gr-1+CD11b+ cells that was mainly related to 

production of matrix metalloproteinase 9 (MMP9) by these cells (226). Studies 

have shown that MMP9 functions as an angiogenic switch during tumorigenesis 

by releasing vascular endothelial growth factor (VEGF) from the matrix (227). 

Importantly, deletion of MMP9 abolished the angiogenesis-promoting activity 

(226). Tumor associated macrophages can also release a number of potent 

growth and angiogenic factors such as platelet-derived growth factor, epidermal 

growth factor, fibroblast growth factor, and IL-8 (228-230). Furthermore, Lin etal., 

showed that the absence of macrophages from the TME in the mammary-tumor 

prone mouse model markedly delayed benign to malignant transition and 

pulmonary metastasis (231). We could not detect any major phenotypic 

differences between the infiltrates of tumors that expressed SLC and control 

tumors when morbid animals were evaluated. However, we cannot exclude the 

possibility that differences in the cellular composition of the infiltrate existed 

during early tumor growth of TRAMPC2 and TRAMPC2/SLC. 
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CHAPTER VI 

CONCLUSION AND FUTURE DIRECTIONS 

Dendritic cells are known as the most efficient antigen-presenting cell type 

with the ability to interact with T cells and initiate an immune response. Dendritic 

cells are receiving increasing scientific and clinical interest due to their key role in 

the immune response (71). However tumors have been shown to be 

immunosuppressive and prevent initiation of the immune response by different 

mechanisms. We showed that at least one possible mechanism for TRAMP 

tumor cells to escape immune recognition could be the immature phenotype of 

DCs in the TME. Maturation of DCs is a required step for T cell activation and 

induction of immune response. In this study we showed that although TRAMP 

TME is immunosuppressive and prevents maturation of tumor infiltrating DCs but 

these DCs are not refractory to activation by bacterial stimuli. This is important 

since the major goal of this study was to generate vaccines to induce an immune 

response by co-localizing DCs and T cells and/or inducing DC maturation. 

Although expression of CD40L and GM-CSF by TRAMPC2 cells caused DC 

maturation to some extent in vitro but these cell lines did not grow in vivo that 

could be due to the fact that these cell line had some background expression of 

the cytokine that could be enough to generate sufficient immune response to 

reject the tumor. 

Expression of SLC in vitro did not induce DC maturation when it was 

secreted from TRAMPC2 tumor cells, however when it was expressed in vivo it 

delayed tumor growth and prolonged survival of tumor bearing mice. The 
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mechanism of SLC function could be co-localization of DCs and T cells rather 

than induction of DC maturation. Furthermore, SLC reduced the frequency of 

metastasis. Expression of SLC in TRAMP TME did not have any effect on the 

growth of established tumors however this could be due to loss of SLC transgene 

expression through methylation of its promoter. It seemed that gene silencing 

through promoter methylation could be a possible mechanism for loss of 

transgene expression by TRAMPC2 cells therefore replacing the CMV promoter 

with a promoter that is less susceptible to methylation could actually prevent the 

loss of transgene expression by TRAMPC2 cells. The replacement of the 

promoter can help with the leakiness of these cell lines and lower the background 

expression of the cytokines. This is important specifically in case of CD40L and 

GM-CSF as the inability of these cell lines to grow in vivo could be due to 

immune response induction through the background expression. 

We did not detect any difference between the infiltrate compositions of 

TRAMP tumors that expressed SLC or control group. We phenotyped the 

infiltrates when the mice had progressed disease and it seemed that the 

expression of SLC had role in preventing the establishment of tumors and did not 

affect the growth of established tumors. This could also be the result of promoter 

methylation that seemed to cause silencing of the SLC gene throughout the 

tumor growth. Therefore the infiltrate composition of treated and not treated mice 

could be different at earlier time points when the tumor is just established and 

tumor cells still secret SLC in the tetracycline treated mice and SLC gene is not 

silenced due to promoter methylation. 
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Flt3-L is known to be a haematopoetic growth factor for both myeloid and 

lymphoid precursors (108). Systemic injection of flt3-L into the mice with 

established TRAMP tumors induced growth inhibition and prolonged their 

survival (115). The tumor growth inhibition was correlated with the infiltration of 

mainly myeloid cells but not T cells (115). This therapy alone was not successful 

and did not induce long-term immunity because disease relapse occurred after 

the termination of treatment. Furthermore myeloid cells are known to be 

immunosuppressive and it has been shown that elimination of these cells 

improved CD4 and CD8 mediated tumor-specific immune response (232). On the 

other hand we showed that expression of SLC in TRAMP TME also enhanced 

the survival of tumor bearing mice and inhibited tumor growth. The major function 

of SLC is known to be attraction of DCs and T cells. Therefore combination of 

these therapies can induce a more potent immune response. To avoid 

consecutive daily injections transgenic mice that conditionally express murine 

flt3-L in the presence of tetracycline could be used (110). Expression of flt3-L in 

these transgenic mice led to dramatic increases in the number of DC in multiple 

tissues and expansion of different subsets of DCs including CD8+ DCs (110). 

Treatment of flt3-L transgenic mice implanted with TRAMPC2/TR/SLC tumor 

cells with tetracycline would cause expression of both flt3-L and SLC. Flt3-L 

would expand the number of DCs and SLC that is expressed by the tumor cells 

would attract DCs and T cell in the TME. The interaction of these cells can 

induce a potent immune response to prevent tumor growth. 

Delivering a therapeutic gene that encodes a molecule that directly or 
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indirectly kills tumor cells is an attractive approach in cancer gene therapy. Gene 

modified cancer vaccines are usually composed of autologous tumor cells stably 

transfected with an immunostimulatory gene (207). The original hypothesis was 

that the expression of cytokines or the co-stimulatory molecules would allow the 

tumor cell to provide all of the signals for activation of T cells, bypassing the need 

for host APCs (76, 206). However, preclinical models showed that introduction of 

GM-CSF that expands the number of DCs into tumor cells produced the most 

active vaccine (55). These cytokine-modified autologous tumor cell vaccines 

have been tested in clinical trials for several years (129). The manufacture of 

autologous tumor cell vaccines requires tumor cell cultures from each patient, 

transfection of these cells and selection of cells that express the transgene. To 

avoid this long process, other methods have been explored, including the use of 

allogeneic gene-modified tumor cell vaccines, transfection of autologous non

cancerous cells that are easier to obtain and gene-modify (usually fibroblasts) or 

the use of other bystander cells coinjected with autologous tumor cells (233). 

These strategies that decrease vaccine production time could be applied to 

generate prostate cancer vaccines using flt3-L and/or SLC. 

In summary our studies demonstrated that TRAMP tumor infiltrating DCs 

are not only phenotypically immature and this immature phenotype was induced 

by TRAMP tumor cells but not GR1+ cells infiltrating the tumor. We also showed 

that GM-CSF and CD40L could reverse the immunosuppressive effect of 

TRAMPC2 cells on DCs in vitro that made them good candidates for in vivo 

studies. In vivo studies with GM-CSF or CD40L transfected TRAMPC2 cells were 
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not successful due to either the genetic instability of TRAMPC2 cells that resulted 

in unstable expression of chemokines or the "leakiness" of the system that 

induced a tumor rejection response. SLC was not as effective as CD40L and 

GM-CSF to induce DC maturation in vitro however, transplantation studies in vivo 

showed that SLC inhibited tumor growth and metastasis in an orthotopic TRAMP 

prostate cancer model. 
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APPENDICES 

A. ADDITIONAL REAGENTS: 

Tumor digestion buffer (in 20ml 1X PBS): 

20mg/20ml Collagenase Type I (Sigma) 

0.20mg/20ml DNase I (Sigma) 

50U/20ml Hylauronidase (Sigma) 

Red blood cell lysis buffer: 

Reagent 1: 15gr NH4CI added to 1L of sterile, distilled water. 

Reagent 2: 12.5ml Na2HP04 (0.5M) 

3.9ml sterile NaH2P04 (0.5M) 

The solution was brought up to 240ml with sterile water. The pH was adjusted to 

7.2 using concentrated HCI and filter sterilized. 

To prepare the red blood lysis buffer: 

1 part reagentl was mixed with 1 part reagent 2 and stored at 4°C. 

Wash buffer for flow cytometery: 

0.1% Goat serum 

0.01% sodium azide in 1X PBS 
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B: ANTIBODIES 

Optimal concentrations of antibodies used for flow cytometry: 

Antibody 

APC-GR1 

FITC-CD8a 

PE-F4/80 

APC-CD11C 

Cy7-B220 (CD45R) 

Biotin-anti-GR1 

FITC-MHC class II 

FITC-MHC class I 

Cy7-CD86 

PE-CD80 

PE-CD40 

PE-B7-DC (PD-L2) 

PE-CCR7 

PE-CD154(CD40L) 

Concentration/106 cells 

0.1ug 

0.13ug 

0.13ug 

0.1 Mg 

0.13|jg 

o.iMg 

0.5ug 

0.5ug 

0.1ug 

0.1ug 

0.1 ug 

0.1ug 

0.1ug 

0.1ug 

Source 

eBioscience 

eBioscience 

eBioscience 

eBioscience 

eBioscience 

eBioscience 

eBioscience 

eBioscience 

Biolegend 

eBioscience 

eBioscience 

eBioscience 

eBioscience 

eBioscience 
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