1,090 research outputs found

    Safely dissolvable and healable active packaging films based on alginate and pectin

    Get PDF
    Extensive usage of long-lasting petroleum based plastics for short-lived application such as packaging has raised concerns regarding their role in environmental pollution. In this research, we have developed active, healable, and safely dissolvable alginate-pectin based biocomposites that have potential applications in food packaging. The morphological study revealed the rough surface of these biocomposite films. Tensile properties indicated that the fabricated samples have mechanical properties in the range of commercially available packaging films while possessing excellent healing effciency. Biocomposite films exhibited higher hydrophobicity properties compared to neat alginate films. Thermal analysis indicated that crosslinked biocomposite samples possess higher thermal stability in temperatures below 120 °C, while antibacterial analysis against E. coli and S. aureus revealed the antibacterial properties of the prepared samples against different bacteria. The fabricated biodegradable multi-functional biocomposite films possess various imperative properties, making them ideal for utilization as packaging material

    Nanoparticles Based-Plant Protein Containing Rosmarinus officinalis Essential Oil; Fabrication, Characterization, and Evaluation

    Get PDF
    The toxicity risks, instability of essential oil, and complex composition are principal obstacles to using essential plant oil for clinical applications. Solving stability-related problems, providing targeted drug delivery, and decreasing plant essential oil toxicity, encapsulation can be used successfully. Rosemary (Rosmarinus officinalis) is a perennial plant of the Lamiaceae family with various healing properties. However, the rosemary essential oil, as volatile oil, is fast evaporated, which limits its applications. This study’s goal is to boost the prevent evaporation and bioactivity of rosemary essential oil by developing zein-NPs as a promising NDS (nano-drug-delivery system) and assessing the effect of NPs on the rosemary essential oil efficacy. Scanning electron microscopy (SEM) showed NPs sizes between 70–200 nm. With dynamic light scattering analysis (DLS), the average size of zein nanoparticle-containing rosemary essential oil (NPZLA) was obtained at ca. 154.5 nm. The entrapment efficiency (EE) on rosemary essential oil was ca. 71% inside the zein NPs. The in vitro release suggests that the polymeric barrier can control the rosemary essential oil release. Zein-NPs can be potentially used as NC (nanocarrier) for enhancing the evaporation inhibitor of ether oil of rosemary essential oil to enhance its bioavailability and performance further. It can be concluded that rosemary plant can be used as the core inside the nanoparticle by biological production method due to its medicinal properties and other properties. Based on the stated content, it is clear that in the future, by conducting more extensive research, the necessary platform can be provided for the use of this medicinal plant as much as possible in the pharmaceutical industry

    Apoptotic functions of microRNAs in pathogenesis, diagnosis, and treatment of endometriosis

    Get PDF
    MicroRNAs or miRNAs are a component of the non-coding RNAs family which is engaged in many cellular functions such as cell proliferation, apoptosis, gene expression, signaling pathways, angiogenesis, and etc. Endometriosis is a malignant gynecologic disorder occurring in women before menopausal age. Pathogenesis of this illness is still a discussion subject between the scientists but in our knowledge, microRNAs can be one of the possible involved factors. The purpose of this paper is to investigate the role of apoptotic activities of miRNAs in endometriosis. Accumulative evidence has demonstrated the role of cell proliferation, apoptosis, and invasion in the progression of these diseases. In this review, we looked into the specific role of apoptosis and its related genes and pathways in endometriosis and tied to present an explanation of how miRNAs can affect endometriosis by their apoptotic activities. What we found is that a great extent of miRNAs is involved in this illness and they are responsible for repressing apoptosis and progression of the disease. As a result, miRNAs have two different usages in endometriosis: biomarkers and potential therapeutic targets. In this review we gathered a great amount of evidence to inquire into the role of micro RNAs in inducing apoptosis and how this mechanism can be exerted for therapeutic purposes for endometriosis. © 2020 The Author(s)

    Quantum Dot Light-Emitting Transistors-Powerful Research Tools and Their Future Applications

    Get PDF
    In this progress report, the recent work in the field of light-emitting field-effect transistors (LEFETs) based on colloidal quantum dots (CQDs) as emitters is highlighted. These devices combine the possibility of electrical switching, as known from field-effect transistors, with the possibility of light emission in a single device. The properties of field-effect transistors and the prerequisites of LEFETs are reviewed, before motivating the use of colloidal quantum dots for light emission. Recent reports on these quantum dot light-emitting field-effect transistors (QDLEFETs) include both materials emitting in the near infrared and the visible spectral range-underlining the great potential and breadth of applications for QDLEFETs. The way in which LEFETs can further the understanding of the CQD material properties-their photophysics as well as the carrier transport through films-is discussed. In addition, an overview of technology areas offering the potential for large impact is provided

    Apoptotic functions of microRNAs in pathogenesis, diagnosis, and treatment of endometriosis

    Get PDF
    MicroRNAs or miRNAs are a component of the non-coding RNAs family which is engaged in many cellular functions such as cell proliferation, apoptosis, gene expression, signaling pathways, angiogenesis, and etc. Endometriosis is a malignant gynecologic disorder occurring in women before menopausal age. Pathogenesis of this illness is still a discussion subject between the scientists but in our knowledge, microRNAs can be one of the possible involved factors. The purpose of this paper is to investigate the role of apoptotic activities of miRNAs in endometriosis. Accumulative evidence has demonstrated the role of cell proliferation, apoptosis, and invasion in the progression of these diseases. In this review, we looked into the specific role of apoptosis and its related genes and pathways in endometriosis and tied to present an explanation of how miRNAs can affect endometriosis by their apoptotic activities. What we found is that a great extent of miRNAs is involved in this illness and they are responsible for repressing apoptosis and progression of the disease. As a result, miRNAs have two different usages in endometriosis: biomarkers and potential therapeutic targets. In this review we gathered a great amount of evidence to inquire into the role of micro RNAs in inducing apoptosis and how this mechanism can be exerted for therapeutic purposes for endometriosis. © 2020 The Author(s)

    Dynamics of two laterally coupled semiconductor lasers: strong- and weak-coupling theory.

    Get PDF
    Copyright © 2008 The American Physical SocietyThe stability and nonlinear dynamics of two semiconductor lasers coupled side to side via evanescent waves are investigated by using three different models. In the composite-cavity model, the coupling between the lasers is accurately taken into account by calculating electric field profiles (composite-cavity modes) of the whole coupled-laser system. A bifurcation analysis of the composite-cavity model uncovers how different types of dynamics, including stationary phase-locking, periodic, quasiperiodic, and chaotic intensity oscillations, are organized. In the individual-laser model, the coupling between individual lasers is introduced phenomenologically with ad hoc coupling terms. Comparison with the composite-cavity model reveals drastic differences in the dynamics. To identify the causes of these differences, we derive a coupled-laser model with coupling terms which are consistent with the solution of the wave equation and the relevant boundary conditions. This coupled-laser model reproduces the dynamics of the composite-cavity model under weak-coupling conditions

    Circular RNAs: New genetic tools in melanoma

    Get PDF
    Melanoma is the most lethal form of skin cancer. New technologies have resulted in major advances in the diagnosis and treatment of melanoma and other cancer types. Recently, some studies have investigated the role of circular RNAs (circRNAs) in different cancers. CircRNAs are a member of long noncoding RNA family mainly formed through back-splicing and have a closed-loop structure. These molecules affect several biological and oncogenic cascades in diverse ways via acting as microRNA sponge, interacting with RNA-binding proteins and acting as a transcription regulator. In this review, we made an insight into the impact of circRNA dysregulation in the melanoma tumorigenesis based on the presented evidences. © 2020 Future Medicine Ltd
    corecore