25 research outputs found
Ras-association domain family 1C protein promotes breast cancer cell migration and attenuates apoptosis
<p>Abstract</p> <p>Background</p> <p>The Ras association domain family 1 (RASSF1) gene is a Ras effector encoding two major mRNA forms, RASSF1A and RASSF1C, derived by alternative promoter selection and alternative mRNA splicing. RASSF1A is a tumor suppressor gene. However, very little is known about the function of RASSF1C both in normal and transformed cells.</p> <p>Methods</p> <p>Gene silencing and over-expression techniques were used to modulate RASSF1C expression in human breast cancer cells. Affymetrix-microarray analysis was performed using T47D cells over-expressing RASSF1C to identify RASSF1C target genes. RT-PCR and western blot techniques were used to validate target gene expression. Cell invasion and apoptosis assays were also performed.</p> <p>Results</p> <p>In this article, we report the effects of altering RASSF1C expression in human breast cancer cells. We found that silencing RASSF1C mRNA in breast cancer cell lines (MDA-MB231 and T47D) caused a small but significant decrease in cell proliferation. Conversely, inducible over-expression of RASSF1C in breast cancer cells (MDA-MB231 and T47D) resulted in a small increase in cell proliferation. We also report on the identification of novel RASSF1C target genes. RASSF1C down-regulates several pro-apoptotic and tumor suppressor genes and up-regulates several growth promoting genes in breast cancer cells. We further show that down-regulation of caspase 3 via overexpression of RASSF1C reduces breast cancer cells' sensitivity to the apoptosis inducing agent, etoposide. Furthermore, we found that RASSF1C over-expression enhances T47D cell invasion/migration <it>in vitro</it>.</p> <p>Conclusion</p> <p>Together, our findings suggest that RASSF1C, unlike RASSF1A, is not a tumor suppressor, but instead may play a role in stimulating metastasis and survival in breast cancer cells.</p
The Role of RASSF1C in the Tumor Microenvironment
The tumor microenvironment (TME) plays a vital role in tumor invasion and metastasis and provides a rich environment for identifying novel therapeutic targets. The TME landscape consists of an extracellular matrix (ECM) and stromal cells. ECM is a major component of TME that mediates the interaction between cancer cells and stromal cells to promote invasion and metastasis. We have shown in published work that RASSF1C promotes cancer stem cell development, migration, and drug resistance, in part, by promoting EMT through a mechanism that involves up-regulation of the PIWIL1-piRNA axis. Consistent with this, in this study, we demonstrate that RASSF1C promotes lung cancer metastasis in vivo using an orthotopic mouse model. Interestingly, two target genes identified in a previously conducted microarray study to be up-regulated by RASSF1C in breast and non-small cell lung cancer (NSCLC) cells are prolyl 4-hydroxylase alpha-2 (P4HA2) and procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 (PLOD2). In cancer, P4H2A and PLOD2 are vital for collagen posttranslational modification and folding leading to the formation of a stiff ECM and induction of EMT and cancer stem cell marker gene expression, resulting in metastatic dissemination. Here, we also show that overexpression of RASSF1C up-regulates Collagen I, P4HA2, and PLOD2 in vitro. Up-regulation of P4HA2 and PLOD2 by RASSF1C was also confirmed in lung and breast cancer cells in vivo using mouse models. Further, we found that treatment of wildtype lung cancer cells or lung cancer cells overexpressing RASSF1C or PIWIL1 with piR-35127 and 46545 (both down-regulated by RASSF1C) decreased lung cancer cell invasion/migration. Taken together, our findings suggest that RASSF1C may promote lung cancer cell ECM remodeling to induce lung cancer cell stemness, invasion, and metastasis, in part, by up-regulating a previously unknown PIWIL1-P4HA2-PLOD2 pathway. Furthermore, piR-35127 and piR-46545 could potentially be important anti-metastatic tools
The Role of RASSF1C in the Tumor Microenvironment
The tumor microenvironment (TME) plays a vital role in tumor invasion and metastasis and provides a rich environment for identifying novel therapeutic targets. The TME landscape consists of an extracellular matrix (ECM) and stromal cells. ECM is a major component of TME that mediates the interaction between cancer cells and stromal cells to promote invasion and metastasis. We have shown in published work that RASSF1C promotes cancer stem cell development, migration, and drug resistance, in part, by promoting EMT through a mechanism that involves up-regulation of the PIWIL1-piRNA axis. Consistent with this, in this study, we demonstrate that RASSF1C promotes lung cancer metastasis in vivo using an orthotopic mouse model. Interestingly, two target genes identified in a previously conducted microarray study to be up-regulated by RASSF1C in breast and non-small cell lung cancer (NSCLC) cells are prolyl 4-hydroxylase alpha-2 (P4HA2) and procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 (PLOD2). In cancer, P4H2A and PLOD2 are vital for collagen posttranslational modification and folding leading to the formation of a stiff ECM and induction of EMT and cancer stem cell marker gene expression, resulting in metastatic dissemination. Here, we also show that overexpression of RASSF1C up-regulates Collagen I, P4HA2, and PLOD2 in vitro. Up-regulation of P4HA2 and PLOD2 by RASSF1C was also confirmed in lung and breast cancer cells in vivo using mouse models. Further, we found that treatment of wildtype lung cancer cells or lung cancer cells overexpressing RASSF1C or PIWIL1 with piR-35127 and 46545 (both down-regulated by RASSF1C) decreased lung cancer cell invasion/migration. Taken together, our findings suggest that RASSF1C may promote lung cancer cell ECM remodeling to induce lung cancer cell stemness, invasion, and metastasis, in part, by up-regulating a previously unknown PIWIL1-P4HA2-PLOD2 pathway. Furthermore, piR-35127 and piR-46545 could potentially be important anti-metastatic tools
Evidence that RASSF1C stimulation of lung cancer cell proliferation depends on IGFBP-5 and PIWIL1 expression levels.
RASSF1C is a major isoform of the RASSF1 gene, and is emerging as an oncogene. This is in contradistinction to the RASSF1A isoform, which is an established tumor suppressor. We have previously shown that RASSF1C promotes lung cancer cell proliferation and have identified RASSF1C target genes with growth promoting functions. Here, we further report that RASSF1C promotes lung cancer cell migration and enhances lung cancer cell tumor sphere formation. We also show that RASSF1C over-expression reduces the inhibitory effects of the anti-cancer agent, betulinic acid (BA), on lung cancer cell proliferation. In previous work, we demonstrated that RASSF1C up-regulates piwil1 gene expression, which is a stem cell self-renewal gene that is over-expressed in several human cancers, including lung cancer. Here, we report on the effects of BA on piwil1 gene expression. Cells treated with BA show decreased piwil1 expression. Also, interaction of IGFBP-5 with RASSF1C appears to prevent RASSF1C from up-regulating PIWIL1 protein levels. These findings suggest that IGFBP-5 may be a negative modulator of RASSF1C/ PIWIL1 growth-promoting activities. In addition, we found that inhibition of the ATM-AMPK pathway up-regulates RASSF1C gene expression
ADAM-9 Is an Insulin-like Growth Factor Binding Protein-5 Protease Produced and Secreted by Human Osteoblasts
IGF binding protein-5 (BP-5) is an important bone formation regulator. Therefore, elucidation of the identity of IGF binding protein-5 (BP-5) protease produced by osteoblasts is important for our understanding of the molecular pathways that control the action of BP-5. In this regard, BP-5 protease purified by various chromatographic steps from a conditioned medium of U2 human osteosarcoma cells migrated as a single major band, which comigrated with the protease activity in native PAGE and yielded multiple bands in SDSāPAGE under reducing conditions. N-Terminal sequencing of these bands revealed that three of the bands yielded amino acid sequences that were identical to that of Ī±2 macroglobulin (Ī±2M). Although Ī±2M was produced by human osteoblasts (OBs), it was not found to be a BP-5 protease. Because Ī±2M had been shown to complex with ADAM proteases and because ADAM-12 was found to cleave BP-3 and BP-5, we evaluated if one of the members of ADAM family was the BP-5 protease. On the basis of the findings that (1) purified preparations of BP-5 protease from U2 cell CM contained ADAM-9, (2) ADAM-9 is produced and secreted in high abundance by various human OB cell types, (3) purified ADAM-9 cleaved BP-5 effectively while it did not cleave other IGFBPs or did so with less potency, and (4) purified ADAM-9 bound to Ī±2M, we conclude that ADAM-9 is a BP-5 protease produced by human OBs
ADAM-9 Is an Insulin-like Growth Factor Binding Protein-5 Protease Produced and Secreted by Human Osteoblasts
IGF binding protein-5 (BP-5) is an important bone formation regulator. Therefore, elucidation of the identity of IGF binding protein-5 (BP-5) protease produced by osteoblasts is important for our understanding of the molecular pathways that control the action of BP-5. In this regard, BP-5 protease purified by various chromatographic steps from a conditioned medium of U2 human osteosarcoma cells migrated as a single major band, which comigrated with the protease activity in native PAGE and yielded multiple bands in SDSāPAGE under reducing conditions. N-Terminal sequencing of these bands revealed that three of the bands yielded amino acid sequences that were identical to that of Ī±2 macroglobulin (Ī±2M). Although Ī±2M was produced by human osteoblasts (OBs), it was not found to be a BP-5 protease. Because Ī±2M had been shown to complex with ADAM proteases and because ADAM-12 was found to cleave BP-3 and BP-5, we evaluated if one of the members of ADAM family was the BP-5 protease. On the basis of the findings that (1) purified preparations of BP-5 protease from U2 cell CM contained ADAM-9, (2) ADAM-9 is produced and secreted in high abundance by various human OB cell types, (3) purified ADAM-9 cleaved BP-5 effectively while it did not cleave other IGFBPs or did so with less potency, and (4) purified ADAM-9 bound to Ī±2M, we conclude that ADAM-9 is a BP-5 protease produced by human OBs
RASSF1C decreases the sensitivity of lung cancer cells to betulinic acid.
<p>A549 (A) and NCI-H1299 (B) lung cancer cells over-expressing RASSF1C were treated with betulinic acid (BA) for 24 h. Cells were then assayed for cell viability/proliferation. RASSF1C over-expression significantly reduced the sensitivity of cells to BA. Data is representative of at least 3 independent experiments, and the values represent the meanĀ±SEM. * P<0.05: for 1C compared to BB.</p
Effect of RASSF1C-IGFBP5 interaction on PIWIL1 protein levels.
<p>(A) Western blot analysis of NCI-H1299 and A549 cells stably transduced with MLV-backbone (BB), MLV-HA-RASSF1C (1C), MLV-HA-IGFBP-5 (BP5), and co-transduced with both MLV-HA-RASSF1C and āIGFBP-5 (1C-BP5) and treated with 1 Āµg/ml doxycycline for 48 h. The anti-HA tag antibody detected a HA-RASSF1C and HA-IGFBP-5 fusion protein in cells that over-expressed each alone and those that co-expressed them both. The fusion protein was visualized using fluorescently labeled secondary antibodies. (B) Western blot analysis of A549 and H1299 lung cancer cells stably transduced with MLV-backbone (A549-BB and H1299-BB), MLV-HA-RASSF1C (A549-1C and H1299-1C), MLV-HA-IGFBP-5 (A549-BP5 and H1299-BP5), and MLV-HA-RASSF1C/MLV-HA-IGFBP-5 A549-1C-BP5 and H1299-1C-BP5). The anti-PIWIL1 antibody was used to probe the Western blot. PIWIL1 is up-regulated in A549 and NCI-H1299 cells over-expressing RASSF1C, but not in cells that express IGFBP-5 or co-express both IGFBP-5 and RASSF1C. (C) Shows normalized PIWIL1 protein levels to actin (loading control) with standard deviations, data represents three independent blots.</p