13 research outputs found

    MRI for Guided Right and Left Heart Cardiac Catheterization: A Prospective Study in Congenital Heart Disease

    Get PDF
    [Background] Improvements in outcomes for patients with congenital heart disease (CHD) have increased the need for diagnostic and interventional procedures. Cumulative radiation risk is a growing concern. MRI-guided interventions are a promising ionizing radiation-free, alternative approach.[Purpose] To assess the feasibility of MRI-guided catheterization in young patients with CHD using advanced visualization passive tracking techniques.[Study Type] Prospective.[Population] A total of 30 patients with CHD referred for MRI-guided catheterization and pulmonary vascular resistance analysis (median age/weight: 4 years / 15 kg).[Field Strength/Sequence] 1.5T; partially saturated (pSAT) real-time single-shot balanced steady-state free-precession (bSSFP) sequence.[Assessment] Images were visualized by a single viewer on the scanner console (interactive mode) or using a commercially available advanced visualization platform (iSuite, Philips). Image quality for anatomy and catheter visualization was evaluated by three cardiologists with >5 years' experience in MRI-catheterization using a 1–5 scale (1, poor, 5, excellent). Catheter balloon signal-to-noise ratio (SNR), blood and myocardium SNR, catheter balloon/blood contrast-to-noise ratio (CNR), balloon/myocardium CNR, and blood/myocardium CNR were measured. Procedure findings, feasibility, and adverse events were recorded. A fraction of time in which the catheter was visible was compared between iSuite and the interactive mode.[Statistical Tests] T-test for numerical variables. Wilcoxon signed rank test for categorical variables.[Results] Nine patients had right heart catheterization, 11 had both left and right heart catheterization, and 10 had single ventricle circulation. Nine patients underwent solely MRI-guided catheterization. The mean score for anatomical visualization and contrast between balloon tip and soft tissue was 3.9 ± 0.9 and 4.5 ± 0.7, respectively. iSuite provided a significant improvement in the time during which the balloon was visible in relation to interactive imaging mode (66 ± 17% vs. 46 ± 14%, P < 0.05).[Data Conclusion] MRI-guided catheterizations were carried out safely and is feasible in children and adults with CHD. The pSAT sequence offered robust and simultaneous high contrast visualization of the catheter and cardiac anatomy.Peer reviewe

    Mortality from gastrointestinal congenital anomalies at 264 hospitals in 74 low-income, middle-income, and high-income countries: a multicentre, international, prospective cohort study

    Get PDF
    Summary Background Congenital anomalies are the fifth leading cause of mortality in children younger than 5 years globally. Many gastrointestinal congenital anomalies are fatal without timely access to neonatal surgical care, but few studies have been done on these conditions in low-income and middle-income countries (LMICs). We compared outcomes of the seven most common gastrointestinal congenital anomalies in low-income, middle-income, and high-income countries globally, and identified factors associated with mortality. Methods We did a multicentre, international prospective cohort study of patients younger than 16 years, presenting to hospital for the first time with oesophageal atresia, congenital diaphragmatic hernia, intestinal atresia, gastroschisis, exomphalos, anorectal malformation, and Hirschsprung’s disease. Recruitment was of consecutive patients for a minimum of 1 month between October, 2018, and April, 2019. We collected data on patient demographics, clinical status, interventions, and outcomes using the REDCap platform. Patients were followed up for 30 days after primary intervention, or 30 days after admission if they did not receive an intervention. The primary outcome was all-cause, in-hospital mortality for all conditions combined and each condition individually, stratified by country income status. We did a complete case analysis. Findings We included 3849 patients with 3975 study conditions (560 with oesophageal atresia, 448 with congenital diaphragmatic hernia, 681 with intestinal atresia, 453 with gastroschisis, 325 with exomphalos, 991 with anorectal malformation, and 517 with Hirschsprung’s disease) from 264 hospitals (89 in high-income countries, 166 in middleincome countries, and nine in low-income countries) in 74 countries. Of the 3849 patients, 2231 (58·0%) were male. Median gestational age at birth was 38 weeks (IQR 36–39) and median bodyweight at presentation was 2·8 kg (2·3–3·3). Mortality among all patients was 37 (39·8%) of 93 in low-income countries, 583 (20·4%) of 2860 in middle-income countries, and 50 (5·6%) of 896 in high-income countries (p<0·0001 between all country income groups). Gastroschisis had the greatest difference in mortality between country income strata (nine [90·0%] of ten in lowincome countries, 97 [31·9%] of 304 in middle-income countries, and two [1·4%] of 139 in high-income countries; p≤0·0001 between all country income groups). Factors significantly associated with higher mortality for all patients combined included country income status (low-income vs high-income countries, risk ratio 2·78 [95% CI 1·88–4·11], p<0·0001; middle-income vs high-income countries, 2·11 [1·59–2·79], p<0·0001), sepsis at presentation (1·20 [1·04–1·40], p=0·016), higher American Society of Anesthesiologists (ASA) score at primary intervention (ASA 4–5 vs ASA 1–2, 1·82 [1·40–2·35], p<0·0001; ASA 3 vs ASA 1–2, 1·58, [1·30–1·92], p<0·0001]), surgical safety checklist not used (1·39 [1·02–1·90], p=0·035), and ventilation or parenteral nutrition unavailable when needed (ventilation 1·96, [1·41–2·71], p=0·0001; parenteral nutrition 1·35, [1·05–1·74], p=0·018). Administration of parenteral nutrition (0·61, [0·47–0·79], p=0·0002) and use of a peripherally inserted central catheter (0·65 [0·50–0·86], p=0·0024) or percutaneous central line (0·69 [0·48–1·00], p=0·049) were associated with lower mortality. Interpretation Unacceptable differences in mortality exist for gastrointestinal congenital anomalies between lowincome, middle-income, and high-income countries. Improving access to quality neonatal surgical care in LMICs will be vital to achieve Sustainable Development Goal 3.2 of ending preventable deaths in neonates and children younger than 5 years by 2030

    Compressed TH M-Ary PPM Technique for Improved Performance of UWB Radio

    Get PDF
    proposed Compressed M-Ary PPM (CTH M-Ary PPM) technique is to adopt fixed symbol duration for all M PPM modulation levels, which results in reducing the number of TH chips , improving the SINR at the pulse level and reducing the overall time required to complete the transmission of the same amount of data from any user. As a consequence, lowering the overall probability of users’ collisions, and so, reducing the chance of interference to occur from the beginning on the pulse level. Detailed channel model and Signal-to-Interference-pulse-Noise-Ratio (SINR) derivations are presented. The designed Simulation results confirm that the new proposed scheme enhances transmission quality in terms of Symbol Error Probability (SEP) as a comparison with the conventional TH M-Ary PPM technique

    Interventional Cardiovascular Magnetic Resonance Imaging (iCMR) in an Adolescent with Pulmonary Hypertension

    No full text
    The interventional cardiac magnetic resonance imaging (iCMR) catheterization procedure is feasible and safe for children and adults with pulmonary hypertension and congenital heart defects (CHD). With iCMR, the calculation of pulmonary vascular resistance (PVR) in children with complex CHD with multilevel shunt lesions is accurate. In this paper, we describe the role of the MRI-guided right-sided cardiac catheterization procedure to accurately estimate PVR in the setting of multiple shunt lesions (ventricular septal defect and patent ductus arteriosus) and to address the clinical question of operability in an adolescent with trisomy 21 and severe pulmonary hypertension

    Transcatheter Device Therapy and the Integration of Advanced Imaging in Congenital Heart Disease

    No full text
    Transcatheter device intervention is now offered as first line therapy for many congenital heart defects (CHD) which were traditionally treated with cardiac surgery. While off-label use of devices is common and appropriate, a growing number of devices are now specifically designed and approved for use in CHD. Advanced imaging is now an integral part of interventional procedures including pre-procedure planning, intra-procedural guidance, and post-procedure monitoring. There is robust societal and industrial support for research and development of CHD-specific devices, and the regulatory framework at the national and international level is patient friendly. It is against this backdrop that we review transcatheter implantable devices for CHD, the role and integration of advanced imaging, and explore the current regulatory framework for device approval

    Transcatheter Device Therapy and the Integration of Advanced Imaging in Congenital Heart Disease

    No full text
    Transcatheter device intervention is now offered as first line therapy for many congenital heart defects (CHD) which were traditionally treated with cardiac surgery. While off-label use of devices is common and appropriate, a growing number of devices are now specifically designed and approved for use in CHD. Advanced imaging is now an integral part of interventional procedures including pre-procedure planning, intra-procedural guidance, and post-procedure monitoring. There is robust societal and industrial support for research and development of CHD-specific devices, and the regulatory framework at the national and international level is patient friendly. It is against this backdrop that we review transcatheter implantable devices for CHD, the role and integration of advanced imaging, and explore the current regulatory framework for device approval

    Role of Cross-Sectional Imaging in Pediatric Interventional Cardiac Catheterization

    No full text
    Management of congenital heart disease (CHD) has recently increased utilization of cross-sectional imaging to plan percutaneous interventions. Cardiac computed tomography (CT) and cardiac magnetic resonance (CMR) imaging have become indispensable tools for pre-procedural planning prior to intervention in the pediatric cardiac catheterization lab. In this article, we review several common indications for referral and the impact of cross-sectional imaging on procedural planning, success, and patient surveillance

    Fick versus flow: a real-time invasive cardiovascular magnetic resonance (iCMR) reproducibility study

    No full text
    Abstract Background Cardiac catheterization and cardiovascular magnetic resonance (CMR) imaging have distinct diagnostic roles in the congenital heart disease (CHD) population. Invasive CMR (iCMR) allows for a more thorough assessment of cardiac hemodynamics at the same time under the same conditions. It is assumed but not proven that iCMR gives an incremental value by providing more accurate flow quantification. Methods Subjects with CHD underwent real-time 1.5 T iCMR using a passive catheter tracking technique with partial saturation pulse of 40° to visualize the gadolinium-filled balloon, CMR-conditional guidewire, and cardiac structures simultaneously to aid in completion of right (RHC) and left heart catheterization (LHC). Repeat iCMR and catheterization measurements were performed to compare reliability by the Pearson (PCC) and concordance correlation coefficients (CCC). Results Thirty CHD (20 single ventricle and 10 bi-ventricular) subjects with a median age and weight of 8.3 years (2–33) and 27.7 kg (9.2–80), respectively,  successfully underwent iCMR RHC and LHC. No catheter related complications were encountered. Time taken for first pass RHC and LHC/aortic pull back was 5.1, and 2.9 min, respectively. Total success rate to obtain required data points to complete Fick principle calculations for all patients was 321/328 (98%). One patient with multiple shunts was an outlier and excluded from further analysis. The PCC for catheter-derived pulmonary blood flow (Qp) (0.89, p < 0.001) is slightly lower than iCMR-derived Qp (0.96, p < 0.001), whereas catheter-derived systemic blood flow (Qs) (0.62, p = < 0.001) was considerably lower than iCMR-derived Qs (0.94, p < 0.001). CCC agreement for Qp at baseline (C1-CCC = 0.65, 95% CI 0.41–0.81) and retested conditions (C2-CCC = 0.78, 95% CI 0.58–0.89) were better than for Qs at baseline (C1-CCC = 0.22, 95% CI − 0.15–0.53) and retested conditions (C2-CCC = 0.52, 95% CI 0.17–0.76). Conclusion This study further validates hemodynamic measurements obtained via iCMR. iCMR-derived flows have considerably higher test–retest reliability for Qs. iCMR evaluations allow for more reproducible hemodynamic assessments in the CHD population
    corecore