6 research outputs found

    Scale law on materials efficiency of electrocaloric materials

    Get PDF
    Caloric materials are suggested as energy-efficient refrigerants for future cooling devices. They could replace the greenhouse gases used for decades in our air conditioners, fridges, and heat pumps. Among the four types of caloric materials (electro, baro, elasto, magneto caloric), electrocaloric materials are more promising as applying large electric fields is much simpler and cheaper than the other fields. The research in the last years has been focused on looking for electrocaloric materials with high thermal responses. However, the energy efficiency crucial for future replacement of the vapor compression technology has been overlooked. The intrinsic efficiency of electrocaloric has been barely studied. In the present dissertation, we will study the efficiency of EC materials defined as materials efficiency. It is the ratio of the reversible electrocaloric heat to the reversible electrical work required to drive this heat. In this work, we will study the materials efficiency of the benchmark lead scandium tantalate in different shapes (bulk ceramic and multilayer capacitors). A comparison to other caloric materials is presented in this dissertation. Our work gives more insights on the figure merit of materials efficiency to further improve the efficiency of our devices

    Measuring lead scandium tantalate phase transition entropy by infrared camera

    Get PDF
    Using an infrared camera, we measured the latent heat of the first order phase transition in lead scandium tantalate at different applied electric fields. The entropy change value of 3.4 J kg_ 1 K_ 1 is consistent with differential scanning calorimetry measurements. The advantage of such an approach stems from the possibility to obtain both adiabatic temperature change and latent heat of the phase transition material only with an infrared camera or a thermocouple. This may prove useful for a systemic characterization of first order electrocaloric materials

    Origin of the Large Negative Electrocaloric Effect in Antiferroelectric PbZrO3

    Get PDF
    We have studied the electrocaloric response of the archetypal antiferroelectric PbZrO3 as a function of voltage and temperature in the vicinity of its antiferroelectric-paraelectric phase transition. Large electrocaloric effects of opposite signs, ranging from an electro-cooling of -3.5 K to an electro-heating of +5.5 K, were directly measured with an infrared camera. We show by calorimetric and electromechanical measurements that the large negative electrocaloric effect comes from an endothermic antiferroelectric-ferroelectric switching, in contrast to dipole destabilization of the antiparallel lattice, previously proposed as an explanation for the negative electrocaloric effect of antiferroelectrics.Comment: Article (17 pages) and supplemental material (12 pages) present in .pdf fil

    Electrocaloric effect in BaTiO3 multilayer capacitors with first-order phase transitions

    No full text
    Electrocaloric (EC) materials, presenting large adiabatic temperature change or isothermal entropy change under the application (or removal) of electric fields, offer an efficient alternative to caloric heat pumps for replacing hazardous gases used in traditional vapor-compression systems. Recently, a large EC temperature change of 5.5 K have been reported in Pb(Sc _0.5 Ta _0.5 )O _3 multilayer ceramic capacitors (Nair et al 2019 Nature 575 468) thanks to its strong first-order phase transition and a temperature span of 13 K has been reported in a prototype based on these capacitors (Torelló et al 2020 Science 370 125). However, the toxicity of lead forces researchers to find eco-friendly materials exhibiting competitive EC performances. Here, we study the EC effect in lead-free BaTiO _3 multilayer capacitors using an infrared camera. Unlike commercial BaTiO _3 capacitors, we prepared our samples without sacrifying the first-order phase transition in BaTiO _3 while a low amount of 0.2 mol% Mn was added as an acceptor dopant to improve electrical resistivity. Their EC adiabatic temperature variations show two peaks versus temperature, which match BaTiO _3 two first-order phase transitions, as observed by differential scanning calorimetry. We measured a temperature drop of ∼0.9 K over a temperature range of 70 K under 170 kV cm ^−1 , starting at 30 °C near the tetragonal-to-orthorhombic phase transition. Under the same electric field, a maximum temperature change of 2.4 K was recorded at 126 °C, at BaTiO _3 ’s Curie temperature. Our findings suggest that further optimized BaTiO _3 capacitors could offer a path for designing lead-free caloric cooling prototypes

    Giant electrocaloric materials energy efficiency in highly ordered lead scandium tantalate

    No full text
    Electrocaloric materials are promising working bodies for caloric-based technologies, suggested as an efficient alternative to the vapor compression systems. However, their materials efficiency defined as the ratio of the exchangeable electrocaloric heat to the work needed to trigger this heat remains unknown. Here, we show by direct measurements of heat and electrical work that a highly ordered bulk lead scandium tantalate can exchange more than a hundred times more electrocaloric heat than the work needed to trigger it. Besides, our material exhibits a maximum adiabatic temperature change of 3.7K at an electric field of 40kVcm(-1). These features are strong assets in favor of electrocaloric materials for future cooling devices. The intrinsic efficiency of electrocaloric materials has been largely overlooked. Here, the authors use the parameter materials efficiency as the figure of merit to rank caloric materials, reporting on the materials efficiency of highly ordered bulk lead scandium tantalate PST

    Direct measurement of electrocaloric effect in P(VDF-TrFE-CFE) film using infrared imaging

    No full text
    Poly (vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) P(VDF-TrFE-CFE) is a relaxor ferroelectric polymer, which exhibits a temperature-independent electrocaloric effect at room temperature. In this work, the electrocaloric effect in P(VDF-TrFE-CFE) film was directly analysed using infrared imaging. P(VDF-TrFE-CFE) 64.8%/27.4%/7.8% (in mole) film of (15 ± 1) μm thickness was deposited on polyethylene naphthalate substrate. Direct ECE of P(VDF-TrFE-CFE) film was measured from 15 to 35 °C at different electric fields. A maximum adiabatic temperature change (ΔTad) of 3.58 K was measured during the cooling cycle at a field of 100 V/μm at 30 °C. Finite element analysis of temperature dissipation through the sample estimated that the actual temperature change within P(VDF-TrFE-CFE) film was 4.3 K. Despite the thermal mass of the substrate, a substantial ECE was observed in P(VDF-TrFE-CFE) films. This electrocaloric terpolymer composition could be of interest for electrocaloric cooling applications
    corecore