30 research outputs found

    The invertebrate lysozyme effector ILYS-3 is systemically activated in response to danger signals and confers antimicrobial protection in C. elegans

    Get PDF
    Little is known about the relative contributions and importance of antibacterial effectors in the nematode C. elegans, despite extensive work on the innate immune responses in this organism. We report an investigation of the expression, function and regulation of the six ilys (invertebrate-type lysozyme) genes of C. elegans. These genes exhibited a surprising variety of tissue-specific expression patterns and responses to starvation or bacterial infection. The most strongly expressed, ilys-3, was investigated in detail. ILYS-3 protein was expressed constitutively in the pharynx and coelomocytes, and dynamically in the intestine. Analysis of mutants showed that ILYS-3 was required for pharyngeal grinding (disruption of bacterial cells) during normal growth and consequently it contributes to longevity, as well as being protective against bacterial pathogens. Both starvation and challenge with Gram-positive pathogens resulted in ERK-MAPK-dependent up-regulation of ilys-3 in the intestine. The intestinal induction by pathogens, but not starvation, was found to be dependent on MPK-1 activity in the pharynx rather than in the intestine, demonstrating unexpected communication between these two tissues. The coelomocyte expression appeared to contribute little to normal growth or immunity. Recombinant ILYS-3 protein was found to exhibit appropriate lytic activity against Gram-positive cell wall material

    TAC102 is a novel component of the mitochondrial genome segregation machinery in trypanosomes

    Get PDF
    Trypanosomes show an intriguing organization of their mitochondrial DNA into a catenated network, the kinetoplast DNA (kDNA). While more than 30 proteins involved in kDNA replication have been described, only few components of kDNA segregation machinery are currently known. Electron microscopy studies identified a high-order structure, the tripartite attachment complex (TAC), linking the basal body of the flagellum via the mitochondrial membranes to the kDNA. Here we describe TAC102, a novel core component of the TAC, which is essential for proper kDNA segregation during cell division. Loss of TAC102 leads to mitochondrial genome missegregation but has no impact on proper organelle biogenesis and segregation. The protein is present throughout the cell cycle and is assembled into the newly developing TAC only after the pro-basal body has matured indicating a hierarchy in the assembly process. Furthermore, we provide evidence that the TAC is replicated de novo rather than using a semi-conservative mechanism. Lastly, we demonstrate that TAC102 lacks an N-terminal mitochondrial targeting sequence and requires sequences in the C-terminal part of the protein for its proper localization

    Colonization history of the western corn rootworm (Diabrotica virgifera virgifera) in North America: insights from random forest ABC using microsatellite data

    Get PDF
    First described from western Kansas, USA, the western corn rootworm, Diabrotica virgifera virgifera, is one of the worst pests of maize. The species is generally thought to be of Mexican origin and to have incidentally followed the expansion of maize cultivation into North America thousands of years ago. However, this hypothesis has never been investigated formally. In this study, the genetic variability of samples collected throughout North America was analysed at 13 microsatellite marker loci to explore precisely the population genetic structure and colonization history of D. v. virgifera. In particular, we used up-to-date approximate Bayesian computation methods based on random forest algorithms to test a Mexican versus a central-USA origin of the species, and to compare various possible timings of colonization. This analysis provided strong evidence that the origin of D. v. virgifera was southern (Mexico, or even further south). Surprisingly, we also found that the expansion of the species north of its origin was recent—probably not before 1100 years ago—thus indicating it was not directly associated with the early history of maize expansion out of Mexico, a far more ancient event

    Efficacy and Limitations of Chemically Diverse Small-Molecule Enzyme-Inhibitors against the Synergistic Coagulotoxic Activities of Bitis Viper Venoms

    No full text
    Snakebite remains a significant public health burden globally, disproportionately affecting low-income and impoverished regions of the world. Recently, researchers have begun to focus on the use of small-molecule inhibitors as potential candidates for the neutralisation of key snake venom toxins and as potential field therapies. Bitis vipers represent some of the most medically important as well as frequently encountered snake species in Africa, with a number of species possessing anticoagulant phospholipase A2 (PLA2) toxins that prevent the prothrombinase complex from inducing clot formation. Additionally, species within the genus are known to exert pseudo-procoagulant activity, whereby kallikrein enzymatic toxins cleave fibrinogen to form a weak fibrin clot that rapidly degrades, thereby depleting fibrinogen levels and contributing to the net anticoagulant state. Utilising well-validated coagulation assays measuring time until clot formation, this study addresses the in vitro efficacy of three small molecule enzyme inhibitors (marimastat, prinomastat and varespladib) in neutralising these aforementioned activities. The PLA2 inhibitor varespladib showed the greatest efficacy for the neutralisation of PLA2-driven anticoagulant venom activity, with the metalloproteinase inhibitors prinomastat and marimastat both showing low and highly variable degrees of cross-neutralisation with PLA2 anticoagulant toxicity. However, none of the inhibitors showed efficacy in neutralising the pseudo-procoagulant venom activity exerted by the venom of B. caudalis. Our results highlight the complex nature of snake venoms, for which single-compound treatments will not be universally effective, but combinations might prove highly effective. Despite the limitations of these inhibitors with regards to in vitro kallikrein enzyme pseudo-procoagulant venom activity, our results further support the growing body of literature indicating the potential use of small molecule inhibitors to enhance first-aid treatment of snakebite envenoming, particularly in cases where hospital and thus antivenom treatment is either unavailable or far away

    Efficacy and Limitations of Chemically Diverse Small-Molecule Enzyme-Inhibitors against the Synergistic Coagulotoxic Activities of <i>Bitis</i> Viper Venoms

    No full text
    Snakebite remains a significant public health burden globally, disproportionately affecting low-income and impoverished regions of the world. Recently, researchers have begun to focus on the use of small-molecule inhibitors as potential candidates for the neutralisation of key snake venom toxins and as potential field therapies. Bitis vipers represent some of the most medically important as well as frequently encountered snake species in Africa, with a number of species possessing anticoagulant phospholipase A2 (PLA2) toxins that prevent the prothrombinase complex from inducing clot formation. Additionally, species within the genus are known to exert pseudo-procoagulant activity, whereby kallikrein enzymatic toxins cleave fibrinogen to form a weak fibrin clot that rapidly degrades, thereby depleting fibrinogen levels and contributing to the net anticoagulant state. Utilising well-validated coagulation assays measuring time until clot formation, this study addresses the in vitro efficacy of three small molecule enzyme inhibitors (marimastat, prinomastat and varespladib) in neutralising these aforementioned activities. The PLA2 inhibitor varespladib showed the greatest efficacy for the neutralisation of PLA2-driven anticoagulant venom activity, with the metalloproteinase inhibitors prinomastat and marimastat both showing low and highly variable degrees of cross-neutralisation with PLA2 anticoagulant toxicity. However, none of the inhibitors showed efficacy in neutralising the pseudo-procoagulant venom activity exerted by the venom of B. caudalis. Our results highlight the complex nature of snake venoms, for which single-compound treatments will not be universally effective, but combinations might prove highly effective. Despite the limitations of these inhibitors with regards to in vitro kallikrein enzyme pseudo-procoagulant venom activity, our results further support the growing body of literature indicating the potential use of small molecule inhibitors to enhance first-aid treatment of snakebite envenoming, particularly in cases where hospital and thus antivenom treatment is either unavailable or far away

    Utilising venom activity to infer dietary composition of the Kenyan horned viper (Bitis worthingtoni)

    No full text
    Bitis are well known for being some of the most commonly encountered and medically important snake species in all of Africa. While the majority of species possess potently anticoagulant venom, only B. worthingtoni is known to possess procoagulant venom. Although known to be the basal species within the genus, B. worthingtoni is an almost completely unstudied species with even basic dietary information lacking. This study investigated various aspects of the unique procoagulant effects of B. worthingtoni venom. Coagulation assays determined the primary procoagulant effect to be driven by Factor X activating snake venom metalloprotease toxins. In addition to acting upon the mammalian blood clotting cascade, B. worthingtoni venom was also shown to clot amphibian plasma. As previous studies have shown differences in clotting factors between amphibian and mammalian plasmas, individual enzymes in snake venoms acting on plasma clotting factors can be taxon-selective. As venoms evolve under purifying selection pressures, this suggests that the procoagulant snake venom metalloprotease toxins present in B. worthingtoni have likely been retained from a recent common ancestor shared with the related amphibian-feeding Proatheris superciliaris, and that both amphibians and mammals represent a substantial proportion of B. worthingtoni current diet. Thus, taxon-specific actions of venoms may have utility in inferring dietary composition for rare or difficult to study species. An important caveat is that to validate this hypothesis field studies investigating the dietary ecology of B. worthingtoni must be conducted, as well as further investigations of its venom composition to reconstruct the molecular evolutionary history of the toxins present

    Anticoagulant toxicity of black snake (Elapidae: Pseudechis) venoms: Potency, mechanisms, and antivenom efficacy

    No full text
    Pseudechis species (Australian black snakes) within the Elapidae family are rich in anticoagulant PLA toxins, with the exception of one species (P. porphyriacus) that possesses procoagulant mutated forms of the clotting enzyme Factor Xa. Previously the mechanism of action of the PLA toxins' anticoagulant toxicity was said to be due to inhibition of Factor Xa, but this statement was evidence free. We conducted a series of anticoagulation assays to elucidate the mechanism of anticoagulant action produced by P. australis venom. Our results revealed that, rather than targeting FXa, the PLA toxins inhibited the prothrombinase complex, with FVa-alone or as part of the prothrombinase complex-as the primary target; but with significant thrombin inhibition also noted. In contrast, FXa, and other factors were inhibited only to a lesser degree were minor targets. We quantified coagulotoxic effects upon human plasma caused by all nine anticoagulant Pseudechis species, including nine localities of P. australis across Australia, and found similar anticoagulant potency across all Pseudechis species, with greater potency in P. australis and the undescribed Pseudechis species in the NT. In addition, the northern localities and eastern of P. australis were statistically significantly more potent than the central, western, and southern localities. All anticoagulant venoms responded well to Black Snake Antivenom, except P. colletti which was poorly neutralised by Black Snake Antivenom and also Tiger Snake Antivenom (the prescribed antivenom for this species). However, we found LY315920 (trade name: Varespladib), a small molecule inhibitor of PLA proteins, exhibited strong potency against P. colletti venom. Thus Varespladib may be a clinically viable treatment for anticoagulant toxicity exerted by this species that is not neutralised by available antivenoms. Our results provide insights into coagulotoxic venom function, and suggest future in vivo work be conducted to progress the development of a cheaper, first-line treatment option to treat PLA-rich snake venoms globally

    A web of coagulotoxicity: failure of antivenom to neutralize the destructive (non-clotting) fibrinogenolytic activity of Loxosceles and Sicarius spider venoms

    No full text
    Envenomations are complex medical emergencies that can have a range of symptoms and sequelae. The only specific, scientifically-validated treatment for envenomation is antivenom administration, which is designed to alleviate venom effects. A paucity of efficacy testing exists for numerous antivenoms worldwide, and understanding venom effects and venom potency can help identify antivenom improvement options. Some spider venoms can produce debilitating injuries or even death, yet have been largely neglected in venom and antivenom studies because of the low venom yields. Coagulation disturbances have been particularly under studied due to difficulties in working with blood and the coagulation cascade. These circumstances have resulted in suboptimal spider bite treatment for medically significant spider genera such as Loxosceles and Sicarius. This study identifies and quantifies the anticoagulant effects produced by venoms of three Loxoscles species (L. reclusa, L. boneti, and L. laeta) and that of Sicarius terrosus. We showed that the venoms of all studied species are able to cleave the fibrinogen Aα-chain with varying degrees of potency, with L. reclusa and S. terrosus venom cleaving the Aα-chain most rapidly. Thromboelastography analysis revealed that only L. reclusa venom is able to reduce clot strength, thereby presumably causing anticoagulant effects in the patient. Using the same thromboelastography assays, antivenom efficacy tests revealed that the commonly used Loxoscles-specific SMase D recombinant based antivenom failed to neutralize the anticoagulant effects produced by Loxosceles venom. This study demonstrates the fibrinogenolytic activity of Loxosceles and Sicarius venom and the neutralization failure of Loxosceles antivenom, thus providing impetus for antivenom improvement

    Trimeresurus albolabris snakebite treatment implications arising from ontogenetic venom comparisons of anticoagulant function, and antivenom efficacy

    No full text
    Does the venom of Trimeresurus albolabris (white-lipped green tree pit viper) differ between neonate and adults? This species is responsible for most snakebites within south and southeast Asia, yet it is unknown whether ontogenetic variation in venom composition occurs in this species, or how this might affect antivenom efficacy. Using a coagulation analyser robot, we examined the anticoagulant activity of T. albolabris venom from eight individuals across multiple age classes. We then compared the efficacy of Thai Red Cross Green Tree Pit Viper Antivenom across these age classes. Venoms from all age classes were equally potent in their pseudo-procoagulant, fibrinogenolytic activity, in that fibrinogen was cleaved to form weak, unstable fibrin clots that rapidly broke down, thus resulting in a net anticoagulant state. Similarly, this coagulotoxic activity was well neutralised by antivenom across all venoms. Given that coagulotoxicity is the primary serious pathology in T. albolabris envenomations, we conclude that Thai Red Cross Green Tree Pit Viper Antivenom is a valid treatment for envenomations by this species, regardless of age or sex of the offending snake. These results are relevant for clinical treatment of envenomations by T. albolabris
    corecore