906 research outputs found

    Geothermal systems simulation: A case study

    Get PDF
    Geothermal reservoir simulation is a key step for developing sustainable and efficient strategies for the exploitation of geothermal resources. It is applied in the assessment of several areas of reservoir engineering, such as reservoir performance and re-injection programs, pressure decline in depletion, phase transition conditions, and natural evolution of hydrothermal convection systems. Fluid flow and heat transfer in rock masses, fluid-rock chemical interaction and rock mass deformation are some of the processes addressed in reservoir modelling. The case study of the Las Tres Virgenes (LTV) geothermal field (10 MWe), Baja California Sur, Mexico is presented. Three dimensional (3D) natural state simulations were carried out from emplacement and cooling of two spherical magma chambers using a conductive approach. A conceptual model of the volcanic system was developed on a lithostratigraphic and geochronological basis. Magma chamber volumes were established from eruptive volumes estimations. The thermophysical properties of the medium were assumed to correspond to the dominant rock in each lithological unit as an initial value, and further calibration was made considering histograms of experimentally obtained thermophysical properties of rocks. As the boundaries of the model lie far from the thermal anomaly, we assumed specified temperature boundaries. A Finite Volume (FV) numerical scheme was implemented in a Fortran 90 code to solve the heat equation. Static formation temperatures from well logs were used for validation of the numerical results. Good agreement was observed in those geothermal wells dominated by conductive heat transfer. For other wells, however, it is clear that conduction alone cannot explain observed behaviour, three-dimensional convective models are being implemented for future multiphysics simulations

    Groundwater reinjection and heat dissipation: lessons from the operation of a large groundwater cooling system in Central London

    Get PDF
    The performance of a large open-loop groundwater cooling scheme in a shallow alluvial aquifer at a prominent public building in Central London has been monitored closely over its first 2 years of operation. The installed system provided cooling to the site continuously for a period of 9 months between June 2012 and April 2013. During this period, c. 131300 m3 of groundwater was abstracted from a single pumping well and recharged into a single injection borehole. The amount of heat rejected in this period amounts to c. 1.37 GWh. A programme of hydraulic testing was subsequently undertaken over a 3 month period between July and October 2013 to evaluate the performance of the injection borehole. The data indicate no significant change in injection performance between commissioning trials undertaken in 2010 and the most recent period of testing, as evidenced by comparison of injection pressures for given flow rates in 2010 and 2013. Continuous temperature monitoring of the abstracted water, the discharge and a number of observation wells demonstrates the evolution of a heat plume in the aquifer in response to heat rejection and subsequent dissipation of this heat during the 18 month planned cessation

    Direct Use of Low Enthalpy Deep Geothermal Resources in the East African Rift Valley

    Get PDF
    Geothermal energy is already harnessed across East Africa to provide hundreds of megawatts of electricity, with significant plans for future expansion towards generation at the gigawatt scale. This power generation utilizes the high steam temperatures (typically more than 200 °C) that are available in several locations in Kenya, Ethiopia and elsewhere. The presence of these high enthalpy resources has deflected attention from the often attractive low and medium enthalpy resources present across a more extensive portion of the region. Geothermally heated water at cooler temperatures (less than 90 °C) could be widely produced by drilling shallower and cheaper boreholes than those required for power production. This low enthalpy resource could be widely exploitable throughout the Rift Valley, offering a low carbon, sustainable, reliable and commercially competitive source of heating, drying and cooling (via absorption chillers) to local farmers and growers, and for low temperature commercial and industrial uses. Applications of this type would displace expensive fossil fuels, reducing costs and carbon emissions as well as improving the region’s energy and food security. The power input for pump systems can be accommodated by relatively small generators, so direct heat projects could be beneficial to consumers in areas with no grid access

    Breaking Cosmological Degeneracies in Galaxy Cluster Surveys with a Physical Model of Cluster Structure

    Get PDF
    Forthcoming large galaxy cluster surveys will yield tight constraints on cosmological models. It has been shown that in an idealized survey, containing > 10,000 clusters, statistical errors on dark energy and other cosmological parameters will be at the percent level. It has also been shown that through "self-calibration", parameters describing the mass-observable relation and cosmology can be simultaneously determined, though at a loss in accuracy by about an order of magnitude. Here we examine the utility of an alternative approach of self-calibration, in which a parametrized ab-initio physical model is used to compute cluster structure and the resulting mass-observable relations. As an example, we use a modified-entropy ("pre-heating") model of the intracluster medium, with the history and magnitude of entropy injection as unknown input parameters. Using a Fisher matrix approach, we evaluate the expected simultaneous statistical errors on cosmological and cluster model parameters. We study two types of surveys, in which a comparable number of clusters are identified either through their X-ray emission or through their integrated Sunyaev-Zel'dovich (SZ) effect. We find that compared to a phenomenological parametrization of the mass-observable relation, using our physical model yields significantly tighter constraints in both surveys, and offers substantially improved synergy when the two surveys are combined. These results suggest that parametrized physical models of cluster structure will be useful when extracting cosmological constraints from SZ and X-ray cluster surveys. (abridged)Comment: 22 pages, 8 figures, accepted to Ap

    Cosmological Simulations of the Preheating Scenario for Galaxy Cluster Formation: Comparison to Analytic Models and Observations

    Full text link
    We perform a set of non--radiative cosmological simulations of a preheated intracluster medium in which the entropy of the gas was uniformly boosted at high redshift. The results of these simulations are used first to test the current analytic techniques of preheating via entropy input in the smooth accretion limit. When the unmodified profile is taken directly from simulations, we find that this model is in excellent agreement with the results of our simulations. This suggests that preheated efficiently smoothes the accreted gas, and therefore a shift in the unmodified profile is a good approximation even with a realistic accretion history. When we examine the simulation results in detail, we do not find strong evidence for entropy amplification, at least for the high-redshift preheating model adopted here. In the second section of the paper, we compare the results of the preheating simulations to recent observations. We show -- in agreement with previous work -- that for a reasonable amount of preheating, a satisfactory match can be found to the mass-temperature and luminosity-temperature relations. However -- as noted by previous authors -- we find that the entropy profiles of the simulated groups are much too flat compared to observations. In particular, while rich clusters converge on the adiabatic self--similar scaling at large radius, no single value of the entropy input during preheating can simultaneously reproduce both the core and outer entropy levels. As a result, we confirm that the simple preheating scenario for galaxy cluster formation, in which entropy is injected universally at high redshift, is inconsistent with observations.Comment: 11 pages, 13 figures, accepted for publication in Ap

    Direct Use of Low Enthalpy Deep Geothermal Resources in the East African Rift Valley

    Get PDF
    Geothermal energy is already harnessed across East Africa to provide hundreds of megawatts of electricity, with significant plans for future expansion towards generation at the gigawatt scale. This power generation utilizes the high steam temperatures (typically more than 200 °C) that are available in several locations in Kenya, Ethiopia and elsewhere. The presence of these high enthalpy resources has deflected attention from the often attractive low and medium enthalpy resources present across a more extensive portion of the region. Geothermally heated water at cooler temperatures (less than 90 °C) could be widely produced by drilling shallower and cheaper boreholes than those required for power production. This low enthalpy resource could be widely exploitable throughout the Rift Valley, offering a low carbon, sustainable, reliable and commercially competitive source of heating, drying and cooling (via absorption chillers) to local farmers and growers, and for low temperature commercial and industrial uses. Applications of this type would displace expensive fossil fuels, reducing costs and carbon emissions as well as improving the region’s energy and food security. The power input for pump systems can be accommodated by relatively small generators, so direct heat projects could be beneficial to consumers in areas with no grid access

    EXCITATION of COUPLED STELLAR MOTIONS in the GALACTIC DISK by ORBITING SATELLITES

    Get PDF
    We use a set of high-resolution N-body simulations of the Galactic disk to study its interactions with the population of cosmologically predicted satellites. One simulation illustrates that multiple passages of massive satellites with different velocities through the disk generate a wobble, which has the appearance of rings in face-on projections of the stellar disk. They also produce flares in the outer disk parts and gradually heat the disk through bending waves. A different numerical experiment shows that an individual satellite as massive as the Sagittarius dwarf galaxy passing through the disk will drive coupled horizontal and vertical oscillations of stars in underdense regions with small associated heating. This experiment shows that vertical excursions of stars in these low-density regions can exceed 1 kpc in the Solar neighborhood, resembling the recently locally detected coherent vertical oscillations. They can also induce non-zero vertical streaming motions as large as 10-20 km s-1, which is consistent with recent observations in the Galactic disk. This phenomenon appears as a local ring with modest associated disk heating. © 2016. The American Astronomical Society. All rights reserved

    Geothermal exploration in the Fell Sandstone Formation (Mississippian) beneath the city centre of Newcastle upon Tyne, UK: the Newcastle Science Central Deep Geothermal Borehole

    Get PDF
    The postulate that geothermal energy might be recoverable from strata laterally equivalent to the Fell Sandstone Formation (Carboniferous: Mississippian) beneath Newcastle upon Tyne has been examined by the drilling and testing of the 1821 m deep Newcastle Science Central Deep Geothermal Borehole. This proved 376.5 m of Fell Sandstone Formation below 1400 m, much of which resembled braided river deposits found at outcrop, although some lower portions were reddened and yielded grains of aeolian affinity. Downhole logging after attainment of thermal equilibrium proved a temperature of 73°C at 1740 m, and allowed estimation of heat flow at about 88 mW m−2. This relatively high value probably reflects deep convective transfer of heat over a distance of >8 km from the North Pennine Batholith, along the Ninety Fathom Fault. The Fell Sandstone traversed by the borehole proved to be of low hydraulic conductivity (c. 7×10−5 m d−1). The water that entered the well was highly saline, with a Na–(Ca)–Cl signature similar to other warm waters encountered in the region. It remains for future directional drilling to establish whether sufficient natural fracture permeability can be encountered, or wells stimulated, to support commercial heat production

    The ASTRA Spectrophotometer: A July 2004 Progress Report

    Get PDF
    A cross-dispersed spectrophotometer with CCD detector and its automated 0.5-m telescope at the Fairborn Observatory, now under construction, should begin observations in 6 to 9 months. The Citadel ASTRA Telescope will be able to observe Vega the primary standard, make rapid measurements of the naked-eye stars, use 10 minutes per hour to obtain photometric measurements of the nightly extinction, and obtain high quality observations of V=10.5 mag. stars in an hour. The approximate wavelength range is 3300-9000A with a resolution of 14A in first and 7A in second order. Filter photometric magnitudes and indices will be calibrated in part for use as quality checks. Science observations for major projects such as comparisons with model atmospheres codes and for exploratory investigations should also begin in the first year. The ASTRA team realizes to deal with this potential data flood that they will need help to make the best scientific uses of the data. Thus they are interested in discussing possible collaborations. In less than a year of normal observing, all isolated stars in the Bright Star Catalog that can be observed can have their fluxes well measured. Some A Star related applications are discussed.Comment: 10 pages, 4 figures. Poster presented at IAU Symposium 224 "The A Star Puzzle", 7-13 July 2004, Poprad, Slovaki
    • …
    corecore