892 research outputs found

    Comparison of the National Institutes of Health Stroke Scale with disability outcome measures in acute stroke trials

    Get PDF
    <p><b>Background and Purpose:</b> Acute stroke trials typically use disability scales as their primary end point. Neurologic impairment scales such as the National Institutes of Health Stroke Scale (NIHSS) are possibly more sensitive to change in patient status. We aimed to compare a range of potential NIHSS end points with modified Rankin Scale (mRS) and Barthel Index (BI) end points.</p> <p><b>Methods:</b> We simulated a total of 6000 clinical trials, each with 1400 patients. We estimated statistical power for a range of NIHSS end points, including prognosis-adjusted and fixed dichotomized end points. These end points were compared with the BI and mRS dichotomized at 95 and 1, respectively.</p> <p><b>Results:</b> The most powerful fixed end point was the NIHSS dichotomized at 1. For prognosis-adjusted outcome, we found greatest power if we defined success as achieving a score of ≤1 or improvement by at least 11 points from baseline. We are more likely to achieve a statistically significant result by using this prognosis-adjusted end point instead of NIHSS ≤1 (odds ratio, 2.8; 95% confidence interval [CI], 2.5 to 3.2). Use of the optimal NIHSS prognosis-adjusted end point rather than BI ≥95 could justify a reduction in sample size of approximately 68% (95% CI, 67% to 69%) without loss of statistical power.</p> <p><b>Conclusions:</b> The NIHSS neurologic scale appears more sensitive than the BI or mRS, allowing smaller sample sizes or greater statistical power. The use of an NIHSS prognosis-adjusted end point could allow therapeutic effects from drugs to be more easily identified.</p&gt

    Effects of paylean (ractopamine⋅HCl) on finishing pig growth and variation

    Get PDF
    A total of 336 pigs were used in a 21-day trial to determine the effect of Paylean (9.0 g/ton Ractopamine·HCl) on finishing pig growth and variation. Pigs were allotted based on weight so that all pens had the same initial weight and degree of variation within the pen. Pigs fed Paylean had greater ADG and better feed efficiency than control-fed pigs (P<0.05). However, no differences in pen coefficient of variation were observed (P>0.70). The results suggest that adding Paylean to the diet improves finishing pig growth performance but does not affect weight variation within the pen

    Evaluation of hemicell® on growth performance of late nursery pigs

    Get PDF
    A total of 276 pigs (initially 21.9 lb) was used to determine the effects of added Hemicell® on growth performance. Hemicell® is a patented fermentation product of Bacillus lentus. The active ingredient in the fermentation product is β-mannanase. However, other enzymes such as amylase, xylanase, cellulases, and α-galactosidase also are present. It is claimed that Hemicell® degrades β-mannan in feed, thus, removing its effects as an antinutritive factor in swine diets. Dietary treatments were arranged as a 2 x 3 factorial, with or without 0.05% Hemicell®, in diets with 3 levels of energy density (1,388, 1,488, 1,588 ME, kcal/lb). The 100 kcal increments were achieved by the addition of wheat bran or soy oil to a corn-soybean meal based diet. The addition of Hemicell® to the diets, regardless of energy level, did not lead to an improvement in growth performance in these late nursery pigs. Increasing energy density of the diet, however, resulted in an improved ADG and F/G

    Stress corrosion cracking in Al-Zn-Mg-Cu aluminum alloys in saline environments

    Get PDF
    Copyright 2013 ASM International. This paper was published in Metallurgical and Materials Transactions A, 44A(3), 1230 - 1253, and is made available as an electronic reprint with the permission of ASM International. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplications of any material in this paper for a fee or for commercial purposes, or modification of the content of this paper are prohibited.Stress corrosion cracking of Al-Zn-Mg-Cu (AA7xxx) aluminum alloys exposed to saline environments at temperatures ranging from 293 K to 353 K (20 °C to 80 °C) has been reviewed with particular attention to the influences of alloy composition and temper, and bulk and local environmental conditions. Stress corrosion crack (SCC) growth rates at room temperature for peak- and over-aged tempers in saline environments are minimized for Al-Zn-Mg-Cu alloys containing less than ~8 wt pct Zn when Zn/Mg ratios are ranging from 2 to 3, excess magnesium levels are less than 1 wt pct, and copper content is either less than ~0.2 wt pct or ranging from 1.3 to 2 wt pct. A minimum chloride ion concentration of ~0.01 M is required for crack growth rates to exceed those in distilled water, which insures that the local solution pH in crack-tip regions can be maintained at less than 4. Crack growth rates in saline solution without other additions gradually increase with bulk chloride ion concentrations up to around 0.6 M NaCl, whereas in solutions with sufficiently low dichromate (or chromate), inhibitor additions are insensitive to the bulk chloride concentration and are typically at least double those observed without the additions. DCB specimens, fatigue pre-cracked in air before immersion in a saline environment, show an initial period with no detectible crack growth, followed by crack growth at the distilled water rate, and then transition to a higher crack growth rate typical of region 2 crack growth in the saline environment. Time spent in each stage depends on the type of pre-crack (“pop-in” vs fatigue), applied stress intensity factor, alloy chemistry, bulk environment, and, if applied, the external polarization. Apparent activation energies (E a) for SCC growth in Al-Zn-Mg-Cu alloys exposed to 0.6 M NaCl over the temperatures ranging from 293 K to 353 K (20 °C to 80 °C) for under-, peak-, and over-aged low-copper-containing alloys (~0.8 wt pct), they are typically ranging from 20 to 40 kJ/mol for under- and peak-aged alloys, and based on limited data, around 85 kJ/mol for over-aged tempers. This means that crack propagation in saline environments is most likely to occur by a hydrogen-related process for low-copper-containing Al-Zn-Mg-Cu alloys in under-, peak- and over-aged tempers, and for high-copper alloys in under- and peak-aged tempers. For over-aged high-copper-containing alloys, cracking is most probably under anodic dissolution control. Future stress corrosion studies should focus on understanding the factors that control crack initiation, and insuring that the next generation of higher performance Al-Zn-Mg-Cu alloys has similar longer crack initiation times and crack propagation rates to those of the incumbent alloys in an over-aged condition where crack rates are less than 1 mm/month at a high stress intensity factor

    Towards 5D Grand Unification without SUSY Flavor Problem

    Full text link
    We consider the renormalization group approach to the SUSY flavor problem in the supersymmetric SU(5) model with one extra dimension. In higher dimensional SUSY gauge theories, it has been recently shown that power corrections due to the Kaluza-Klein states of gauge fields run the soft masses generated at the orbifold fixed point to flavor conserving values in the infra-red limit. In models with GUT breaking at the brane where the GUT scale can be larger than the compactification scale, we show that the addition of a bulk Higgs multiplet, which is necessary for the successful unification, is compatible with the flavor universality achieved at the compactification scale.Comment: JHEP style file of 35 pages with 3 figures, Version to appear in JHE

    On the spherical-axial transition in supernova remnants

    Full text link
    A new law of motion for supernova remnant (SNR) which introduces the quantity of swept matter in the thin layer approximation is introduced. This new law of motion is tested on 10 years observations of SN1993J. The introduction of an exponential gradient in the surrounding medium allows to model an aspherical expansion. A weakly asymmetric SNR, SN1006, and a strongly asymmetric SNR, SN1987a, are modeled. In the case of SN1987a the three observed rings are simulated.Comment: 19 figures and 14 pages Accepted for publication in Astrophysics & Space Science in the year 201

    Dorey's Rule and the q-Characters of Simply-Laced Quantum Affine Algebras

    Get PDF
    Let Uq(ghat) be the quantum affine algebra associated to a simply-laced simple Lie algebra g. We examine the relationship between Dorey's rule, which is a geometrical statement about Coxeter orbits of g-weights, and the structure of q-characters of fundamental representations V_{i,a} of Uq(ghat). In particular, we prove, without recourse to the ADE classification, that the rule provides a necessary and sufficient condition for the monomial 1 to appear in the q-character of a three-fold tensor product V_{i,a} x V_{j,b} x V_{k,c}.Comment: 30 pages, latex; v2, to appear in Communications in Mathematical Physic

    Nature of Sonoluminescence: Noble Gas Radiation Excited by Hot Electrons in "Cold" Water

    Get PDF
    We show that strong electric fields occurring in water near the surface of collapsing gas bubbles because of the flexoelectric effect can provoke dynamic electric breakdown in a micron-size region near the bubble and consider the scenario of the SBSL. The scenario is: (i) at the last stage of incomplete collapse of the bubble the gradient of pressure in water near the bubble surface has such a value and sign that the electric field arising from the flexoelectric effect exceeds the threshold field of the dynamic electrical breakdown of water and is directed to the bubble center; (ii) mobile electrons are generated because of thermal ionization of water molecules near the bubble surface; (iii) these electrons are accelerated in ''cold'' water by the strong electric fields; (iv) these hot electrons transfer noble gas atoms dissolved in water to high-energy excited states and optical transitions between these states produce SBSL UV flashes in the trasparency window of water; (v) the breakdown can be repeated several times and the power and duration of the UV flash are determined by the multiplicity of the breakdowns. The SBSL spectrum is found to resemble a black-body spectrum where temperature is given by the effective temperature of the hot electrons. The pulse energy and some other characteristics of the SBSL are found to be in agreement with the experimental data when realistic estimations are made.Comment: 11 pages (RevTex), 1 figure (.ps

    The Kuiper Belt and Other Debris Disks

    Full text link
    We discuss the current knowledge of the Solar system, focusing on bodies in the outer regions, on the information they provide concerning Solar system formation, and on the possible relationships that may exist between our system and the debris disks of other stars. Beyond the domains of the Terrestrial and giant planets, the comets in the Kuiper belt and the Oort cloud preserve some of our most pristine materials. The Kuiper belt, in particular, is a collisional dust source and a scientific bridge to the dusty "debris disks" observed around many nearby main-sequence stars. Study of the Solar system provides a level of detail that we cannot discern in the distant disks while observations of the disks may help to set the Solar system in proper context.Comment: 50 pages, 25 Figures. To appear in conference proceedings book "Astrophysics in the Next Decade

    Geniculo-Cortical Projection Diversity Revealed within the Mouse Visual Thalamus

    Get PDF
    This is the final version of the article. It was first available from PLOS via http://dx.doi.org/10.1371/journal.pone.0144846All dLGN cell co-ordinates, V1 injection sites, dLGN boundary coordinates, experimental protocols and analysis scripts are available for download from figshare at https://figshare.com/s/36c6d937b1844eec80a1.The mouse dorsal lateral geniculate nucleus (dLGN) is an intermediary between retina and primary visual cortex (V1). Recent investigations are beginning to reveal regional complexity in mouse dLGN. Using local injections of retrograde tracers into V1 of adult and neonatal mice, we examined the developing organisation of geniculate projection columns: the population of dLGN-V1 projection neurons that converge in cortex. Serial sectioning of the dLGN enabled the distribution of labelled projection neurons to be reconstructed and collated within a common standardised space. This enabled us to determine: the organisation of cells within the dLGN-V1 projection columns; their internal organisation (topology); and their order relative to V1 (topography). Here, we report parameters of projection columns that are highly variable in young animals and refined in the adult, exhibiting profiles consistent with shell and core zones of the dLGN. Additionally, such profiles are disrupted in adult animals with reduced correlated spontaneous activity during development. Assessing the variability between groups with partial least squares regression suggests that 4?6 cryptic lamina may exist along the length of the projection column. Our findings further spotlight the diversity of the mouse dLGN?an increasingly important model system for understanding the pre-cortical organisation and processing of visual information. Furthermore, our approach of using standardised spaces and pooling information across many animals will enhance future functional studies of the dLGN.Funding was provided by a Wellcome Trust grant jointly awarded to IDT and SJE (083205, www.wellcome.ac.uk), and by MRC PhD Studentships awarded to MNL and ACH (http://www.mrc.ac.uk/)
    corecore