389 research outputs found
Recommended from our members
Vacancy and interstitial loops in irradiated copper
Significant advances have been made in diffuse scattering studies of irradiation induced dislocation loops in metals. Numerical calculational procedures have been developed that provide accurate diffuse scattering cross sections for vacancy and interstitial loops, and these cross sections have been used in conjunction with x-ray diffuse scattering studies of neutron and ion irradiated copper. Size distributions and concentrations have been obtained for both vacancy and interstitial loops and these results are compared with electron microscopy measurements. The size distributions obtained from diffuse scattering measurements show the vacancy loops to be smaller and more numerous than the interstitial loops, and indicate that equal numbers of vacancies and interstitials are in loops. The diffuse scattering and microscopy size distributions agree at the larger sizes, but the diffuse scattering method identifies more loops of the smaller sizes
Nab: Measurement Principles, Apparatus and Uncertainties
The Nab collaboration will perform a precise measurement of 'a', the
electron-neutrino correlation parameter, and 'b', the Fierz interference term
in neutron beta decay, in the Fundamental Neutron Physics Beamline at the SNS,
using a novel electric/magnetic field spectrometer and detector design. The
experiment is aiming at the 10^{-3} accuracy level in (Delta a)/a, and will
provide an independent measurement of lambda = G_A/G_V, the ratio of
axial-vector to vector coupling constants of the nucleon. Nab also plans to
perform the first ever measurement of 'b' in neutron decay, which will provide
an independent limit on the tensor weak coupling.Comment: 12 pages, 6 figures, 1 table, talk presented at the International
Workshop on Particle Physics with Slow Neutrons, Grenoble, 29-31 May 2008; to
appear in Nucl. Instrum. Meth. in Physics Research
Seriation and Multidimensional Scaling: A Data Analysis Approach to Scaling Asymmetric Proximity Matrices
A number of model-based scaling methods have been developed that apply to asymmetric proximity matrices. A flexible data analysis approach is pro posed that combines two psychometric procedures— seriation and multidimensional scaling (MDS). The method uses seriation to define an empirical order ing of the stimuli, and then uses MDS to scale the two separate triangles of the proximity matrix defined by this ordering. The MDS solution con tains directed distances, which define an "extra" dimension that would not otherwise be portrayed, because the dimension comes from relations between the two triangles rather than within triangles. The method is particularly appropriate for the analysis of proximities containing temporal information. A major difficulty is the computa tional intensity of existing seriation algorithms, which is handled by defining a nonmetric seriation algorithm that requires only one complete itera tion. The procedure is illustrated using a matrix of co-citations between recent presidents of the Psychometric Society.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline
Water-like anomalies for core-softened models of fluids: One dimension
We use a one-dimensional (1d) core-softened potential to develop a physical
picture for some of the anomalies present in liquid water. The core-softened
potential mimics the effect of hydrogen bonding. The interest in the 1d system
stems from the facts that closed-form results are possible and that the
qualitative behavior in 1d is reproduced in the liquid phase for higher
dimensions. We discuss the relation between the shape of the potential and the
density anomaly, and we study the entropy anomaly resulting from the density
anomaly. We find that certain forms of the two-step square well potential lead
to the existence at T=0 of a low-density phase favored at low pressures and of
a high-density phase favored at high pressures, and to the appearance of a
point at a positive pressure, which is the analog of the T=0 ``critical
point'' in the Ising model. The existence of point leads to anomalous
behavior of the isothermal compressibility and the isobaric specific heat
.Comment: 22 pages, 7 figure
Statistical Tests of Group Differences in ALSCAL-Derived Subject Weights: Some Monte Carlo Results
Several techniques to test for group differences in weighted multidimensional scaling (MDS) subject weights have recently been proposed. The present study presents monte carlo results to evaluate the op erating characteristics of two of these with ALSCAL- derived subject weights. The first uses the analysis of angular variation (ANAVA) on raw subject weights. The second applies the analysis of variance (ANOVA) to the flattened subject weights generated by ALSCAL. The ANOVA on flattened weights was less affected by the presence of error and by distortions caused by ALSCAL'S normalization routine than was the ANAVA.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline
Gamma-ray detection from gravitino dark matter decay in the SSM
The SSM provides a solution to the -problem of the MSSM and
explains the origin of neutrino masses by simply using right-handed neutrino
superfields. Given that R-parity is broken in this model, the gravitino is a
natural candidate for dark matter since its lifetime becomes much longer than
the age of the Universe. We consider the implications of gravitino dark matter
in the SSM, analyzing in particular the prospects for detecting gamma
rays from decaying gravitinos. If the gravitino explains the whole dark matter
component, a gravitino mass larger than 20 GeV is disfavored by the isotropic
diffuse photon background measurements. On the other hand, a gravitino with a
mass range between 0.1-20 GeV gives rise to a signal that might be observed by
the FERMI satellite. In this way important regions of the parameter space of
the SSM can be checked.Comment: Final version to appear in JCAP, 13 pages, 3 figure
Metal enrichment processes
There are many processes that can transport gas from the galaxies to their
environment and enrich the environment in this way with metals. These metal
enrichment processes have a large influence on the evolution of both the
galaxies and their environment. Various processes can contribute to the gas
transfer: ram-pressure stripping, galactic winds, AGN outflows, galaxy-galaxy
interactions and others. We review their observational evidence, corresponding
simulations, their efficiencies, and their time scales as far as they are known
to date. It seems that all processes can contribute to the enrichment. There is
not a single process that always dominates the enrichment, because the
efficiencies of the processes vary strongly with galaxy and environmental
properties.Comment: 18 pages, 8 figures, accepted for publication in Space Science
Reviews, special issue "Clusters of galaxies: beyond the thermal view",
Editor J.S. Kaastra, Chapter 17; work done by an international team at the
International Space Science Institute (ISSI), Bern, organised by J.S.
Kaastra, A.M. Bykov, S. Schindler & J.A.M. Bleeke
- …