36,412 research outputs found

    Intercomparisons of GOES-derived cloud parameters and surface observations over San Nicolas Island

    Get PDF
    The spatial sampling limitations of surface measurement systems necessitate the use of satellite data for the investigation of large-scale cloud processes. Understanding the information contained in the satellite-observed radiances, however, requires a connection between the remotely sensed cloud properties and those more directly observed within the troposphere. Surface measurements taken during the First ISCCP Regional Experiment (FIRE) Marine Stratocumulus Intensive Field Observations (IFO) are compared here to cloud properties determined from Geostationary Operational Environmental Satellite (GOES) data in order to determine how well the island measurements represent larger areas and to verify some of the satellite-measured parameters

    Photo sensor array technology development

    Get PDF
    The development of an improved capability photo sensor array imager for use in a Viking '75 type facsimile camera is presented. This imager consists of silicon photodiodes and lead sulfide detectors to cover a spectral range from 0.4 to 2.7 microns. An optical design specifying filter configurations and convergence angles is described. Three electronics design approaches: AC-chopped light, DC-dual detector, and DC-single detector, are investigated. Experimental and calculated results are compared whenever possible using breadboard testing and tolerance analysis techniques. Results show that any design used must be forgiving of the relative instability of lead sulfide detectors. A final design using lead sulfide detectors and associated electronics is implemented by fabrication of a hybrid prototype device. Test results of this device show a good agreement with calculated values

    Laser velocimeter systems analysis applied to a flow survey above a stalled wing

    Get PDF
    A laser velocimeter operating in the backscatter mode was used to survey the flow above a stalled wing. Polarization was used to separate the two orthogonal velocity components of the fringe-type laser velocimeter, and digital counters were used for data processing. The velocities of the kerosene seed particles were measured with less than 2 percent uncertainty. The particle velocity measurements were collected into histograms. The flow field survey was carried out above an aspect-ratio-8 stalled wing with an NACA 0012 section. The angle of attack was 19.5 deg, the Mach number was 0.49, and the Reynolds number was 1,400,000. The flow field was characterized by the periodic shedding of discrete vortices from near the crest of the airfoil

    Book Review

    Get PDF

    Extending Bauer's corollary to fractional derivatives

    Full text link
    We comment on the method of Dreisigmeyer and Young [D. W. Dreisigmeyer and P. M. Young, J. Phys. A \textbf{36}, 8297, (2003)] to model nonconservative systems with fractional derivatives. It was previously hoped that using fractional derivatives in an action would allow us to derive a single retarded equation of motion using a variational principle. It is proven that, under certain reasonable assumptions, the method of Dreisigmeyer and Young fails.Comment: Accepted Journal of Physics A at www.iop.org/EJ/journal/JPhys

    A comparison of ISCCP and FIRE satellite cloud parameters

    Get PDF
    One of the goals of the First ISCCP Regional Experiment (FIRE) is the quantification of the uncertainties in the cloud parameter products derived by the International Satellite Cloud Climatology Project (ISCCP). This validation effort has many facets including sensitivity analyses and comparisons to similar data or theoretical results with known accuracies. The FIRE provides cloud-truth data at particular points or along particular lines from surface and aircraft measurement systems. Relating these data to the larger, area-averaged ISCCP results requires intermediate steps using higher resolution satellite data analyses. Errors in the cloud products derived with a particular method can be determined by performing analyses of high resolution satellite data over the area surrounding the point or line measurement. This same analysis technique may then be used to derive cloud parameters over a larger area containing similar cloud fields. It is assumed that the uncertainties found for the small scale analyses are the same for the large scale so that the method has been calibrated for the particular cloud type; i.e., its accuracy is known. Differences between the large scale results using the ISCCP technique and the calibrated method can be computed and used to determine if any significant biases or rms errors occur in the ISCCP results. Selected ISCCP results are compared to cloud parameters derived using the hybrid bispectral threshold method over the FIRE IFO and extended observation areas
    corecore