3,066 research outputs found

    A conceptual model for anticipating the impact of landscape evolution on groundwater recharge in degrading permafrost environments

    Get PDF
    Temperatures in the arctic and subarctic are rising at more than twice the rate of the global average, driving the accelerated thawing of permafrost across the region. The impacts of permafrost degradation have been studied in the discontinuous permafrost zone at Umiujaq, in northern Quebec, Canada, for over 30 years, but the effects of changing land cover on groundwater recharge is not well understood. The water table fluctuation method was used to compute groundwater recharge using four years of water level data and soil moisture readings from five field sites characteristic of different stages of permafrost degradation and vegetation invasion. Results indicate that as vegetation grows taller, groundwater recharge increases, likely due to increased snow thickness. Results were then combined with a preexisting conceptual model that describes the evolution from tundra to shrubland and forests to create a new model for describing how groundwater recharge is affected by landscape evolution

    Transparent, Flexible, and Passive Thermal Touch Panel

    Get PDF
    This work presents a touch panel concept, which is enabled by a novel designof thin film thermocouples. The design offers a simple implementation byutilizing a single thin film to function as an array of thermocouples. Theconcept is demonstrated as a flexible, passive, and highly transparent touchpanel. The passive nature of the thermoelectric touch recognition allows theperformance of the presented sensor to be optimal at moderate sheet resistancevalues of the transparent conductive layers. Hence, the concept is highlypotential for low-cost large-area applications and does not rely on costlylow sheet resistance materials such as indium tin oxide. The demonstratorpresented in this work achieves a signal-to-noise ratio of 20 with a rise timeof 90 ms and is able to distinguish individual touches, sweeping with finger,as well as touching by multiple fingers at the same time. In addition, the conceptmay also be used in other thermal distribution mapping applications.Not peer reviewe

    Field performance of four vibrating-wire piezometer installation methods

    Get PDF
    Vibrating wire piezometers provide a number of advantages over the traditional hydraulic piezometer design. There are many methods and configurations for installing vibrating-wire piezometers, with the most common being: single piezometers in sand packs (SP), multilevel piezometers in sand packs (MLSP), and fully-grouted multilevel piezometers using either bentonite (FGB) or cement-bentonite grout (FGCB). This study assesses the performance of these four different installation methods for vibrating wire piezometers at a field site possessing complex stratigraphy, including glacial and marine sediments. Pore pressure data recorded between December 2017 and July 2019 were analyzed to accomplish this objective. Data indicate that SP, MLSP, and FGB piezometers performed well. This determination is based on the fact that piezometers installed at the same depth with these arrangements recorded similar pressure variations that were coherent with the hydrogeological setting. Of the two fully-grouted installations using cement-bentonite grout, one installation failed completely due to a hydraulic short circuit, caused either by shrinkage of the grout or flow occurring along the wires of the embedded instruments. While the FGB-type piezometers used in this study worked correctly, the lack of standard methods concerning both the construction of fully-grouted piezometers is concerning. Furthermore, the lack of a standard method for mixing cement-bentonite grout likely contributed to the failure of the FGCB installations. Thus, due to the lack of guidance for both construction and grout preparation, the use of a bentonite grout removes a degree of uncertainty when fully-grouted installation techniques are used

    Three-dimensional scapular morphology is associated with rotator cuff tears and alters the abduction moment arm of the supraspinatus.

    Get PDF
    BACKGROUND: Numerous studies have reported an association between rotator cuff injury and two-dimensional measures of scapular morphology. However, the mechanical underpinnings explaining how these shape features affect glenohumeral joint function and lead to injury are poorly understood. We hypothesized that three-dimensional features of scapular morphology differentiate asymptomatic shoulders from those with rotator cuff tears, and that these features would alter the mechanical advantage of the supraspinatus. METHODS: Twenty-four individuals with supraspinatus tears and twenty-seven age-matched controls were recruited. A statistical shape analysis identified scapular features distinguishing symptomatic patients from asymptomatic controls. We examined the effect of injury-associated morphology on mechanics by developing a morphable model driven by six degree-of-freedom biplanar videoradiography data. We used the model to simulate abduction for a range of shapes and computed the supraspinatus moment arm. FINDINGS: Rotator cuff injury was associated with a cranial orientation of the glenoid and scapular spine (P = .011, d = 0.75) and/or decreased subacromial space (P = .001, d = 0.94). The shape analysis also identified previously undocumented features associated with superior inclination and subacromial narrowing. In our computational model, warping the scapula from a cranial to a lateral orientation increased the supraspinatus moment arm at 20° of abduction and decreased the moment arm at 160° of abduction. INTERPRETATIONS: Three-dimensional analysis of scapular morphology indicates a stronger relationship between morphology and cuff tears than two-dimensional measures. Insight into how morphological features affect rotator cuff mechanics may improve patient-specific strategies for prevention and treatment of cuff tears

    Usefulness of LDAEP to Predict Tolerability to SSRIs in Major Depressive Disorder: A Case Report

    Get PDF
    We report here a patient with major depressive disorder who experienced severe adverse effects after the administration of SSRIs (serotonin selective reuptake inhibitors) without improvement of his depressive symptoms. These adverse effects disappeared and his depressive symptoms improved after discontinuation of the SSRIs and the administration of tianeptine. The patient exhibited a low value for the loudness dependent of auditory evoked potentials (LDAEP) -0.14 at baseline, which means that his central serotonergic neurotransmission was already highly active. We assumed that it was this high serotonergic activity that rendered him unresponsive to SSRIs, and brought on him the adverse effects, and that the tianeptine was effective due to the lack of serotonin reuptake inhibitory action. Thus, we suggest that LDAEP can be used to predict an individual patient's tolerability and clinical response to SSRIs in major depression

    Pneumomediastinum Due to Intractable Hiccup as the Presenting Symptom of Multiple Sclerosis

    Get PDF
    Pneumomediastinum and subcutaneous emphysema generally occurs following trauma to the esophagus or lung. It also occurs spontaneously in such situations of elevating intrathoracic pressure as asthma, excessive coughing or forceful straining. We report here on the rare case of a man who experienced the signs of pneumomediastinum and subcutaneous emphysema after a prolonged bout of intractable hiccup as the initial presenting symptoms of multiple sclerosis

    Cost-effectiveness of a medication event monitoring system for tuberculosis management in Morocco

    Get PDF
    BACKGROUND: Digital health technologies have been used to enhance adherence to TB medication, but the cost-effectiveness remains unclear. METHODS: We used the real data from the study conducted from April 2014 to December 2020 in Morocco using a smart pillbox with a web-based medication monitoring system, called Medication Event Monitoring Systems (MEMS). Cost-effectiveness was evaluated using a decision analysis model including Markov model for Multi-drug resistant (MDR) TB from the health system perspective. The primary outcome was the incremental cost-effectiveness ratio (ICER) per disability adjusted life-year (DALY) averted. Two-way sensitive analysis was done for the treatment success rate between MEMS and standard of care. RESULTS: The average total per-patient health system costs for treating a new TB patient under MEMS versus standard of care were 398.70and398.70 and 155.70, respectively. The MEMS strategy would reduce the number of drug-susceptible TB cases by 0.17 and MDR-TB cases by 0.01 per patient over five years. The ICER of MEMS was $434/DALY averted relative to standard of care, and was most susceptible to the TB treatment success rate of both strategies followed by the managing cost of MEMS. CONCLUSION: MEMS is considered cost-effective for managing infectious active TB in Morocco

    Broadband UBVRI Photometry of Horizontal-Branch and Metal-Poor Candidates from the HK and Hamburg/ESO Surveys. I

    Get PDF
    We report broadband UBV and/or BVRI CCD photometry for a total of 1857 stars in the thick-disk and halo populations of the Galaxy. The majority of our targets were selected as candidate field horizontal-branch or other A-type stars (FHB/A, N = 576), or candidate low-metallicity stars (N = 1221), from the HK and Hamburg/ESO objective-prism surveys. Similar data for a small number of additional stars from other samples are also reported. These data are being used for several purposes. In the case of the FHB/A candidates they are used to accurately separate the lower-gravity FHB stars from various higher-gravity A-type stars, a subsample that includes the so-called Blue Metal Poor stars, halo and thick-disk blue stragglers, main-sequence A-type dwarfs, and Am and Ap stars. These data are also being used to derive photometric distance estimates to high-velocity hydrogen clouds in the Galaxy and for improved measurements of the mass of the Galaxy. Photometric data for the metal-poor candidates are being used to refine estimates of stellar metallicity for objects with available medium-resolution spectroscopy, to obtain distance estimates for kinematic analyses, and to establish initial estimates of effective temperature for analysis of high-resolution spectroscopy of the stars for which this information now exists.Comment: 22 pages, including 3 figures, 5 tables, and two ascii files of full data, accepted for publication in the Astrophysical Journal (Supplements
    corecore