5,268 research outputs found

    The third moment of quadratic Dirichlet L-functions

    Full text link
    We study the third moment of quadratic Dirichlet L-functions, obtaining an error term of size O(X3/4+ε)O(X^{3/4 + \varepsilon}).Comment: 27 pages. v2: modified a remark on p.

    Seconds-scale coherence in a tweezer-array optical clock

    Get PDF
    Optical clocks based on atoms and ions achieve exceptional precision and accuracy, with applications to relativistic geodesy, tests of relativity, and searches for dark matter. Achieving such performance requires balancing competing desirable features, including a high particle number, isolation of atoms from collisions, insensitivity to motional effects, and high duty-cycle operation. Here we demonstrate a new platform based on arrays of ultracold strontium atoms confined within optical tweezers that realizes a novel combination of these features by providing a scalable platform for isolated atoms that can be interrogated multiple times. With this tweezer-array clock, we achieve greater than 3 second coherence times and record duty cycles up to 96%, as well as stability commensurate with leading platforms. By using optical tweezer arrays --- a proven platform for the controlled creation of entanglement through microscopic control --- this work further promises a new path toward combining entanglement enhanced sensitivities with the most precise optical clock transitions

    Practical computation of the mixed μ problem

    Get PDF
    Upper and lower bounds for the mixed μ problem have recently been developed, and this paper examines the computational aspects of these bounds. In particular a practical algorithm is developed to compute the bounds. This has been implemented as a Matlab function (m-file), and will be available shortly in a test version in conjunction with the μ-Tools toolbox. The algorithm performance is very encouraging, both in terms of accuracy of the resulting bounds, and growth rate in required computation with problem size. In particular it appears that one can handle medium size problems (less than 100 perturbations) with reasonable computational requirements

    µ analysis with real parametric uncertainty

    Get PDF
    The authors give a broad overview, from a LFT (linear fractional transformation) µ perspective, of some of the theoretical and practical issues associated with robustness in the presence of real parametric uncertainty, with a focus on computation. Recent results on the properties of µ in the mixed case are reviewed, including issues of NP completeness, continuity, computation of bounds, the equivalence of µ and its bounds, and some direct comparisons with Kharitonov-type analysis methods. In addition, some advances in the computational aspects of the problem, including a branch-and-bound algorithm, are briefly presented together with the mixed µ problem may have inherently combinatoric worst-case behavior, practical algorithms with modes computational requirements can be developed for problems of medium size (<100 parameters) that are of engineering interest

    Briefly Bound to Activate: Transient Binding of a Second Catalytic Magnesium Activates the Structure and Dynamics of CDK2 Kinase for Catalysis

    Get PDF
    SummaryWe have determined high-resolution crystal structures of a CDK2/Cyclin A transition state complex bound to ADP, substrate peptide, and MgF3−. Compared to previous structures of active CDK2, the catalytic subunit of the kinase adopts a more closed conformation around the active site and now allows observation of a second Mg2+ ion in the active site. Coupled with a strong [Mg2+] effect on in vitro kinase activity, the structures suggest that the transient binding of the second Mg2+ ion is necessary to achieve maximum rate enhancement of the chemical reaction, and Mg2+ concentration could represent an important regulator of CDK2 activity in vivo. Molecular dynamics simulations illustrate how the simultaneous binding of substrate peptide, ATP, and two Mg2+ ions is able to induce a more rigid and closed organization of the active site that functions to orient the phosphates, stabilize the buildup of negative charge, and shield the subsequently activated γ-phosphate from solvent

    Hybrid simulations of coupled Farley-Buneman/gradient drift instabilities in the equatorial E region ionosphere

    Full text link
    Plasma irregularities in the equatorial E region ionosphere are classified as Type I or Type II, based on coherent radar spectra. Type I irregularities are attributed to the Farley‐Buneman instability and Type II to the gradient drift instability that cascades to meter‐scale irregularities detected by radars. This work presents the first kinetic simulations of coupled Farley‐Buneman and gradient drift turbulence in the equatorial E region ionosphere for a range of zeroth‐order vertical electric fields, using a new approach to solving the electrostatic potential equation. The simulation models a collisional quasi‐neutral plasma with a warm, inertialess electron fluid and a distribution of NO+ ions. A 512 m wave with a maximum/minimum of ±0.25 of the background density perturbs the plasma. The density wave creates an electrostatic field that adds to the zeroth‐order vertical and ambipolar fields, and drives Farley‐Buneman turbulence even when these fields are below the instability threshold. Wave power spectra show that Type II irregularities develop in all simulation runs and that Type I irregularities with wavelengths of a few meters develop in the trough of the background wave in addition to Type II irregularities as the zeroth‐order electric field magnitude increases. Linear fluid theory predicts the growth of Type II irregularities reasonably well, but it does not fully capture the simultaneous growth of Type I irregularities in the region of peak total electric field. The growth of localized Type I irregularities represents a parametric instability in which the electric field of the large‐scale background wave drives pure Farley‐Buneman turbulence. These results help explain observations of meter‐scale irregularities advected by kilometer‐scale waves.This work was supported by NSF grants AGS-1007789 and PHY-1500439, and NASA grants NNX11A096G and NNX14AI13G. This work used the XSEDE and TACC computational facilities, supported by NSF grant ACI-1053575, for simulation runs. Simulation-produced data are archived at TACC and are available upon request. This work also used the Massachusetts Green High Performance Computing Center for simulation data analysis. The authors thank one reviewer for insightful comments and critiques. (AGS-1007789 - NSF; PHY-1500439 - NSF; ACI-1053575 - NSF; NNX11A096G - NASA; NNX14AI13G - NASA

    Changes in the gut microbiota of mice orally exposed to methylimidazolium ionic liquids

    Get PDF
    Ionic liquids are salts used in a variety of industrial processes, and being relatively non-volatile, are proposed as environmentally-friendly replacements for existing volatile liquids. Methylimidazolium ionic liquids resist complete degradation in the environment, likely because the imidazolium moiety does not exist naturally in biological systems. However, there is limited data available regarding their mammalian effects in vivo. This study aimed to examine the effects of exposing mice separately to 2 different methylimidazolium ionic liquids (BMI and M8OI) through their addition to drinking water. Potential effects on key target organs-the liver and kidney-were examined, as well as the gut microbiome. Adult male mice were exposed to drinking water containing ionic liquids at a concentration of 440 mg/L for 18 weeks prior to examination of tissues, serum, urine and the gut microbiome. Histopathology was performed on tissues and clinical chemistry on serum for biomarkers of hepatic and renal injury. Bacterial DNA was isolated from the gut contents and subjected to targeted 16S rRNA sequencing. Mild hepatic and renal effects were limited to glycogen depletion and mild degenerative changes respectively. No hepatic or renal adverse effects were observed. In contrast, ionic liquid exposure altered gut microbial composition but not overall alpha diversity. Proportional abundance of Lachnospiraceae, Clostridia and Coriobacteriaceae spp. were significantly greater in ionic liquid-exposed mice, as were predicted KEGG functional pathways associated with xenobiotic and amino acid metabolism. Exposure to ionic liquids via drinking water therefore resulted in marked changes in the gut microbiome in mice prior to any overt pathological effects in target organs. Ionic liquids may be an emerging risk to health through their potential effects on the gut microbiome, which is implicated in the causes and/or severity of an array of chronic disease in humans

    Dual RNA-seq of parasite and host reveals gene expression dynamics during filarial worm–mosquito interactions

    Get PDF
    Parasite biology, by its very nature, cannot be understood without integrating it with that of the host, nor can the host response be adequately explained without considering the activity of the parasite. However, due to experimental limitations, molecular studies of parasite-host systems have been predominantly one-sided investigations focusing on either of the partners involved. Here, we conducted a dual RNA-seq time course analysis of filarial worm parasite and host mosquito to better understand the parasite processes underlying development in and interaction with the host tissue, from the establishment of infection to the development of infective-stage larva.Using the Brugia malayi-Aedes aegypti system, we report parasite gene transcription dynamics, which exhibited a highly ordered developmental program consisting of a series of cyclical and state-transitioning temporal patterns. In addition, we contextualized these parasite data in relation to the concurrent dynamics of the host transcriptome. Comparative analyses using uninfected tissues and different host strains revealed the influence of parasite development on host gene transcription as well as the influence of the host environment on parasite gene transcription. We also critically evaluated the life-cycle transcriptome of B. malayi by comparing developmental stages in the mosquito relative to those in the mammalian host, providing insight into gene expression changes underpinning the mosquito-borne parasitic lifestyle of this heteroxenous parasite.The data presented herein provide the research community with information to design wet lab experiments and select candidates for future study to more fully dissect the whole set of molecular interactions of both organisms in this mosquito-filarial worm symbiotic relationship. Furthermore, characterization of the transcriptional program over the complete life cycle of the parasite, including stages within the mosquito, could help devise novel targets for control strategies
    corecore